
Technical Report
CMU/SEI-88-TR-30
ESD-TR-88-31

Carnegie-Mellon University

Software Engineering Institute

An OOD Paradigm for Flight
Simulators, 2nd Edition

Kenneth J. Lee
Michael S. Rissman

Richard D'Ippolito
Charles Plinta

Roger Van Scoy
December 1987, First Edition
September 1988, Second Edition

/ AM2.0W9

Technical Report
CMU/SEI-88-TR-30

ESD-TR-88-31
December 1987, First Edition

September 1988, Second Edition

An OOD Paradigm for Flight
Simulators, 2nd Edition

Kenneth J. Lee
Michael S. Rissman
Richard D'Ippolito

Charles Plinta
Roger Van Scoy

Dissemination of Ada Software Engineering Technology

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1988 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering,
please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademark in this publication is not intended in any way to infringe on the rights of the trademark
holder.

Table of Contents

1. Introduction 3
1.1. Ab stract/B ackground 3
1.2. Motivation 3
1.3. Characteristics of the Application Domain 4
1.4. Reader's Guide ' 5

2. Approach 7
2.1. History 7
2.2. Design Goals 8

2.2.1. Nested objects 8
2.2.2. Object dependencies 8

2.3. Evolution of the Paradigm 9

3. Concepts Used by the Paradigm 11
3.1. Overview of the Software Architecture 12

3.1.1. The Executive Level 12
3.1.2. The System Level 14
3.1.3. Overall Software Architecture 14

4. Paradigm Description 17
4.1. Engine Description 17
4.2. Engine Object Diagram 17
4.3. Object Abstraction 21

4.3.1. Object Managers 21
4.3.2. Object Manager Structure 22
4.3.3. Object Manager Operations 24
4.3.4. Advantages of the Object Abstraction 26

4.4. Connection Abstraction 27
4.4.1. Overview of Connections 27
4.4.2. Procedural Abstraction 28

4.4.2.1. Get Needed Information 28
4.4.2.2. Convert Information 29
4.4.2.3. Put Converted Information 31

CMU/SEI-88-TR-30

4.4.3. Advantages of Connections 31
4.5. System Abstraction 31

4.5.1. System Aggregates 32
4.5.1.1. Building an Aggregate 32

4.5.2. Updating 33
4.5.3. Advantages of Systems 35

4.6. Executives 35
4.6.1. Implementation of an Executive 35
4.6.2. Advantages of Executives 36

4.7. Advantages of the Architecture of the Paradigm 37

5. Development Process 41
5.1. Role of the Paradigm 41
5.2. Templates and Reuse 41

5.2.1. Diagram Parsers 43
5.3. Enhancements to Object Diagrams 43

6. Open Issues 45
6.1. Distributed Processing 45
6.2. Tuning 46
6.3. Reposition and Flight Freeze 47
6.4. System Exports and System Imports 48
6.5. Our Executive's Control of Time 48
6.6. Cyclicness 50
6.7. Load Balancing 51
6.8. Generics 53
6.9. System-Level Objects 53

7. Electrical System 57
7.1. Additional Concepts 57

Appendix A. Software Architecture Notation 59

Appendix B. Object Manager Template 65

Appendix C. Engine code 77
C.l. Package GlobalJTypes 77
C.2. Package Standard_Engineering_Types 78
C.3. Package Bleed_Valve_Object_Manager 79
C.4. Package Burner_Object_Manager 81
C.5. Package body Burner_Object_Manager 84
C.6. Package Diffuser_Object_Manager 87
C.7. Package Engine_Casing_Object_Manager 90
C.8. Package Exhaust_Object_Manager 93
C.9. Package Fan_Duct_Object_Manager 95

ii CMU/SEI-88-TR-30

CIO. Package Rotorl_Object_Manager 97
C.ll. Package Rotor2_Object_Manager 101
C. 12. Package Flight.Executive 104
C. 13. Package body Flight_Executive 105
C.14. Package Flight_System_Names 107
C.15. Package Flight_Executive_Connection_Manager 108
C.16. Package body Flight_Executive_Connection_Manager 109
C.17. Separate Procedure body 110

Process_External_Connections_To_Engine_System
C. 18. Package Engine_System 112
C.19. Package body Engine_System 114
C.20. Package Engine_System_Aggregate 116

CMU/SEI-88-TR-30 iii

iv CMU/SEI-88-TR-30

List of Figures

Figure 2-1: Object Dependency Example 9
Figure 3-1: Object Diagram Example 12
Figure 3-2: Executive Level Software Architecture 13
Figure 3-3: Connection Manager Software Architecture 13
Figure 3-4: System Level Architecture 14
Figure 3-5: Overall Software Architecture 15
Figure 4-1: Turbofan Engine Description 18
Figure 4-2: Turbofan Engine Object Diagram 19
Figure 4-3: Burner_Object_Manager Package Specification 23
Figure 4-4: Burner_Object_Manager Package Body 24
Figure 4-5: Executive-Level Connection ~ Spark Conversion Routine 29
Figure 4-6: System-Level Connection 30
Figure 4-7: Engine Representation Example 32
Figure 4-8: Engine Aggregate Example 34
Figure 4-9: Executive Activity Table Example 36
Figure 4-10: Flight Executive Example 37
Figure 4-11: Object Dependency Example 38
Figure 5-1: Object Manager Template Example 42
Figure 6-1: Executive Connection Procedure Example 45
Figure 6-2: Communicating with a Data Transfer Buffer 45
Figure 6-3: Alternative Engine Object Diagram 49
Figure 6-4: Alternative Software Architecture 50
Figure 6-5: Executive Example 51
Figure 6-6: System Example 52
Figure 6-7: Generic Object Manager Example 54
Figure 6-8: Generic Object Instantiation Example 55
Figure A-l: Object, Subsystem and Dependency Notation 60
Figure A-2: Package Notation 61
Figure A-3: Subprogram Notation 62
Figure A-4: Task Notation 63

CMU/SEI-88-TR-30

Preface

This is the second edition of the SEI Technical Report, An OOD Paradigm for Flight
Simulators, which was first issued in December, 1987. We have issued this edition to report
modifications we made to the paradigm while preparing for a tutorial given at the March,
1988 AdaJUG in Phoenix, AZ.

The paradigm is being used by SEI affiliates on full-scale devlopment programs. The SEI
project team supports the use of the paradigm by consulting with the affiliates. The
affiliates' efforts improve the paradigm by tailoring it to the nuances of particular programs.

This report does not describe all the ways the paradigm has been tailored to fit specific
programs. The results of those efforts will be documented in subsequent versions of this
report. Some of the more substantial changes are treated as Open Issues in Section 6 of this
edition.

CMU/SEI-88-TR-30

CMU/SEI-88-TR-30

1. Introduction

1.1. Abstract/Background

This report presents a paradigm for object-oriented implementations of flight simulators. It
is a result of work on the Ada Simulator Validation Program (ASVP) carried out by members
of the technical staff at the Software Engineering Institute (SEI).

1.2. Motivation

Object-oriented design (OOD) predominates discussions about Ada-based software engineer-
ing. The identification of objects and the implementation of objects are two separate issues.
This paradigm is a model for implementing systems of objects. The objects are described in a
form of specification called an object diagram.1 The paradigm is not about how to create the
specification.

Although much has been written on object-oriented design, SEI project members could find
no examples of object-oriented implementations relevant to flight simulators. Examples
were required for two reasons. First, object-orientation was new to both of the contractors on
the ASVP. A methodology which leads to a specification of objects is useful only if developers
know how to implement what is specified. Second, managers were skeptical about the bene-
fits of object-oriented design. Examples were needed to determine whether benefits out-
weigh costs.

The intent of our work was to produce examples of object-oriented systems. It was not our
intent to determine whether object-oriented design was best for flight simulators.2

1See Chapter 4 and Figure 4-2 for an example of an object diagram.

2See Section 2.1 for some historical motivation.

CMU/SEI-88-TR-30

1.3. Characteristics of the Application Domain

The paradigm was developed for a specific application domain, namely flight simulators and
training devices. This section puts the paradigm in context by briefly describing the relevant
features of the application domain.

The objective of a flight simulator is to reproduce on the ground the behavior of an aircraft in
flight. Simulators are used to:

• train aircrew

• train maintainers of aircraft

• aid designers of aircraft

A training simulator consists of a mock-up of stations for the aircrew being trained. The
mock-up contains the controls available to manipulate the aircraft and systems for cuing the
operator to the aircraft's response to his actions. Cues include gauges, video, sound, and
motion.

The training mission is set by an instructor at an Instructor Operator Station (IOS). Some of
the factors set by the instructor are longitude, latitude, altitude, and atmospheric conditions.
Instructors also affect the behavior of the simulator by introducing aircraft malfunctions.

The ASVP focused on software that models the behavior of major systems affecting an
aircraft's flight: the airframe, the engines, the electrical system, the fuel system, the
hydraulic system, and others.

Traditionally, this software is put under the control of an executive which periodically up-
dates systems. Flight simulators are not event-driven. Interaction between systems in the
real aircraft are continuous. Simulators model those interactions in discrete time.

Time constraints are normally tighter than memory constraints. Multiple processors are
used to distribute processing and to link the software to hardware in the aircrew training
station. Trends are such that multi-processor architectures are becoming more prevalent in
the domain.

Flight simulators are long-lived and frequently modified. The two major modifications are
changes to the aircraft itself which must be reflected in the simulator software and, secondly,
changes in the training missions. Typical of the latter are the addition of new malfunctions.

Flight simulators are based on math models provided by the manufacturer of the aircraft
components in the actual aircraft. The ultimate test of the simulator is the way it feels to
aircrew experienced with the aircraft being simulated. The process of tuning the feel of the
simulator is called aircrew tuning.

Flight simulators provide natural opportunities for reusing software. First, different aircraft
have the same kinds of components, e.g., engines, fuel systems, electrical systems, etc.

CMU/SEI-88-TR-30

Sometimes a particular instance of a kind of component, a Pratt and Whitney engine for
example, is used on a variety of aircraft. Second, the three classes of simulators—training,
maintenance, and engineering—model the same components to varying degrees of fidelity.
Third, a simulator is made up of systems that can be viewed identically at some level of
abstraction.

1.4. Reader's Guide
This report contains the work completed to date, presents the paradigm, and discusses the
advantages of the paradigm. It is meant to stand on its own merits. The model we have
developed solves a specific set of problems. We do not claim it to be the only model for
solving these problems. The paradigm uses many of the characteristic software engineering
concepts, but the report is not intended to be a report on software engineering theory.3

The next chapter discusses our approach to developing the paradigm and how we assessed
the fit of our solution to the problem at hand.

Chapter 3
introduces the conceptual elements of the paradigm and provides an overview of the
software structure implied by the paradigm.

Chapter 4
presents a detailed view of the elements of the paradigm. The elements are presented
bottom-up using an Engine system as an example. Each section on a particular ele-
ment ends with a discussion of the benefits of the implementation chosen for the para-
digm. The final section of Chapter 4 summarizes the benefits of the paradigm.

Chapter 5
discusses the role of a paradigm in the development process.

Chapter 6
discusses issues which we have thought about during the development but have not
had time to fully address.

Chapter 7
is a very brief presentation of a simulator Electrical system.

Appendix A
describes a modified form of the notation expounded by Grady Booch in his book on
software engineering with Ada [1] and his book on reusable software components with
Ada [2]. The notation is used in the diagrams in Chapter 3.

Appendix B
contains an object manager template. The use of reusable code templates is discussed
in Chapter 5.

Appendix C
presents a version of the Engine system code complete through the package specifi-
cations. The intent is to demonstrate the software architecture defined by the object
paradigm discussed in Chapter 4.

3If the audience perceives that this report would be useful within a tutorial on software engineering, we invite
such a use of the report.

CMU/SEI-88-TR-30

CMU/SEI-88-TR-30

2. Approach

2.1. History

The project team began the search for a paradigm after reviewing an implementation of an
electrical system done by one of the contractors on the ASVP. The implementation was more
data-oriented than object-oriented. The implementation was a definite improvement over
the original FORTRAN implementation. However, the team did not consider the implemen-
tation to be exemplary.

The project team decided to spend what it thought would be no more than a month or two
developing an example of a pure object-oriented design of an electrical system. A circuit
diagram was used to identify the objects and the relationships among the objects. The be-
havior of the objects, e.g., circuit breakers, relays, and batteries, and of circuits in general,
was well understood.

Material available to us on object-oriented design did not adequately address connections
among objects or updating systems of objects in discrete time.

The project team implemented an object-oriented electrical system which came close to satis-
fying the goals described below. At that time one of the contractors on the ASVP asked the
project team to sketch out an object-oriented implementation of an engine. The team ob-
served that the object-oriented implementation of an engine and of an electrical system were
identical at some level of abstraction.

The project team decided to capture the similarities in a paradigm for object-oriented sys-
tems. The paradigm was to dictate how an object-oriented specification would be imple-
mented in software and how the update of systems would be controlled. The drive to gener-
alize uncovered flaws in our designs of both the engine system and the electrical system.

The project team did not develop the paradigm methodically. We were not interested in
testing design methods. Our goal was to produce a paradigm for object-oriented systems.
We did not want to limit our search space to architectures produced by known methods.

CMU/SEI-88-TR-30

2.2. Design Goals

The project team began with two basic goals. One was to eliminate nested implementations
of objects. The other was to simplify dependencies among objects.

2.2.1. Nested objects
Nested objects result from decompositional approaches that purport to help the designer
discover which objects are needed to implement a system. For example, the designer begins
with the notion of an engine as a black box. All interfaces to the engine appear at the surface
of the black box. Now, suppose the vibration of an engine compressor needs to be metered.
The designer decides to decompose the engine into other objects, one of which is a compres-
sor. Access to the vibration level of the compressor passes through two levels: the engine
level and the compressor level. Further, decomposition might lead to modeling each stage of
the compressor as an object, thus adding a third layer to the nested object. Finally, black box
implementations require knowledge of the entire black box, even when only one state or
aspect of the black box is used.

Nested, hierarchical objects do have advantages. First, it should be possible to update a
composite object, such as an engine, as if it were a black box. Second, it should be possible to
reuse an object, such as an engine, as a separate entity.

2.2.2. Object dependencies
Figure 2-1 shows a dependency between objects A and B. In this example, B provides A with
something* Thus the state of A depends on the state of B.5 There are several ways for
handling this dependency. One common method is to have the implementation of object A
with object B. When A is updated, A reads the relevant state of B. This method does not work
if B and A are on separate processors. Even if A and B are on the same processor, it is never
clear which object should define the dependent data type.

Another common solution is to have object B call object A and report its state. This solution
introduces a new problem without solving the problem mentioned above. If the flow between
B and A is continuous, then it is unnatural for object B to model discrete time by controlling
the rate at which A is updated. Further, if B and A are part of a closed feedback loop, the
update cycles indefinitely.

4The same diagrammatic notation is used throughout this report. The arrows represent dataflows. Thus
something is needed by the object at the head of the arrow and is supplied by the object at the tail of the arrow. The
arrow is labeled with the data near its tail.

In Ada, an object which depends on another, separately compiled object, uses the with clause to gain visibility of
the dependent object. The object is said to with the dependent object.

CMU/SEI-88-TR-30

something
Object B

Figure 2-1: Object Dependency Example

2.3. Evolution of the Paradigm

Designers talk about the fit of a design to its context, the problem space. The criteria for
assessing the fit of solutions to complex problems often can be determined only in response to
a proposed solution and cannot be determined before solutions are generated. Such was the
case for the paradigm.

Our team began with intuitive feelings about the standard goals of software engineering,
such as modularity, ease of enhancement, and reuse. The paradigm passed through several
iterations within the team. Each iteration left a legacy of criteria for assessing the fit of the
solution for the paradigm.

For example, the model for object managers6 and a means for connecting objects surfaced in
the first version of the paradigm. The objects stood alone, and were not dependent on Ada
types declared elsewhere. This enhanced the reusability of the object managers and facili-
tated independent development. The means for connecting objects had an intuitive analog in
the real-world. Pipes and wires, connecting objects in the world, are as real as the objects
themselves and would not be subsumed in software by the implementations of the objects.

Since the first edition, the notion of a connection has changed. Conduits, e.g., the Engine
Casing in the Engine system (see Chapter 4), or wires in the Electrical system, can have
states just like other objects and might need to retain information about previous states like
other objects. Futhermore, these "connecting" objects could be in a malfunctioning opera-
tional state like other objects. Therefore, this kind of object is now considered equivalent to
other objects. The abstraction which is now called a connection merely transfers data be-
tween any two objects. A connection does not have an analogy in the physical world; it
merely implements an arrow on the object diagram, Figure 4-2.

Object managers are introduced in Chapter 4.

CMU/SEI-88-TR-30

Also, after issuing the first edition, we determined that the distinction we had made between
systems and subsystems was not necessary. Thus, the notion of a subsystem has been
eliminated.

The chapters which follow discuss the advantages of the paradigm. We did not set out to
obtain these advantages. The advantages revealed themselves as the work progressed. An
advantage which revealed itself in one iteration, was retained as a criterion for evaluating
the fit of subsequent iterations.

10 CMU/SEI-88-TR-30

3. Concepts Used by the Paradigm

This chapter provides a brief description of some of the concepts introduced with the para-
digm and a high level overview of the software architecture defined within the paradigm.
The concepts are further elaborated in Chapter 4.

The paradigm described in this report begins with the notion of an executive. An executive
controls the update of a set of systems compiled together running on a single processor. The
paradigm assumes that there will be more than one set of systems and that multiprocessing
will be involved.

Communication between executives is handled by an abstraction called a buffer. A buffer is
some means of sharing data among separately compiled software. The paradigm makes no
assumption about how the operating system transfers data or how executives on separate
processors are invoked.

The fundamental units of the paradigm are objects and connections. Objects map to real-
world entities. An object is implemented as a math model that maps the environmental
effects on the object to the object's outputs, given the attributes of the object and its opera-
tional state. The implementation isolates individual effects. Also, an object is not aware of
its connections to other objects.

A connection is the mechanism for transferring state information between objects. Proc-
essing a connection involves reading the state of some objects on the connection and broad-
casting to others.

At all levels, updates are accomplished by gating (or processing) the appropriate connections.
The levels discussed in the paradigm are system and executive. A system is an aggregation of
objects8 and the connections among those objects. An executive is a set of systems and all
connections that cross system boundaries, i.e., connections between objects in different sys-

7In our observations of flight simulators, a buffer is a record data structure used in the communication between
processors.

8The aggregation is a matter of convenience. The objects are aggregated because they cooperate in performing
common goals.

CMU/SEI-88-TR-30 11

tems. Figure 3-1 shows views of an executive, two systems, and several objects and connec-
tions.

Executive-level

System 1 System 2

d e
1

1' >
3

a

4

2 5

Executive is : System t, System 2, and connections a and e
System 1 is : Objects!, 2, and 3, and connections b and d
System 2 is : Objects 4, 5, and connection c

Figure 3-1: Object Diagram Example

3.1. Overview of the Software Architecture

3.1.1. The Executive Level
Figure 3-2 shows the executive-level software architecture.9 In this case, we assume an
executive-level called Flight_Executive. The body of the Flight_Executive package contains a
tabular schedule of systems to update. The names of the systems are declared in the pack-
age Flight_System_Names, the sole purpose of which is to enumerate the names.

Each system is represented by a package called <system_name>_System.10 The specifi-

See Appendix A for a description of the icons used in Figures 3-2, 3-3, and 3-4. The arrows on the diagrams
represent {withing) dependencies. The shaded portions of each icon represent the package body, the white portions
the package specification. Note that the dependencies originate within package bodies. This reduces the need for
widespread recompilation in the event of a change.

°The use of "<...>" within subprogram names, type names, or text refers to a general ease of the item. For
example, <ay«tem_name>_System, is a general form representing all instances of the package name, e.g.,
Engine_Sy«tem, El«ctrical_Sy»tem, Fuel_System, etc. See Chapter 5 for a more detailed discussion and
examples of the use of "<„.>".

12 CMU/SEI-88-TR-30

Fllght_Executlve

CT=3

T
Fllght_Ex«cutiv« Connections Engine_Systsm

<L_ JL

riW.W.W.

c
L

Eloctrical_System

i_
Fu8l_Systom

i
X D

• •

Figure 3-2: Executive Level Software Architecture

cation of a System package exports a single procedure which is called by Flight_Executive to
update a system.

The connections belonging to the executive-level are managed by an
<executive_name>_Connections package, in this case, Flight_Executive_Connections.
The architecture from the perspective of the connection package is shown in Figure 3-3.

Fllght_Executlvs_Connectlons

c

Englne_System_Aggregate

x
c

DiffuserJDM Rotor! _OM Rotor2 OM I Burn»r_OM BI««d_Valv«_OM Fan_Duct_OM Exhaust_OM Englns_Caslng_OM

OM - Object Manager

Figure 3-3: Connection Manager Software Architecture

The body of the connection package is a series of separate procedures, one for each system

CMU/SEI-88-TR-30 13

under the control of the executive. Each separate procedure is responsible for gating all the

executive-level connections to a system.

3.1.2. The System Level
Figure 3-4 shows the architecture from thv ^rspective of a system, using the Engine system
as an example. Objects in a sysiem are created and named by the
<system_name>_System_Aggregate package. Objects are managed by
<object_name>_Object_Manager (OM) packages.

Engine_System

Engine^System Aggregate

•

> H- <

Engine_System_Connections

Diffuser_OM Rotofl_OM Rotor2_OM Bumer_OM Bleed_Valve_OM Fan_Duct_OM Exhaust.
r j

OM Bleed Val

€]€Jl
OM Englne_Casing_OM

OM m Object Manager

Figure 3-4: System Level Architecture

3.1.3. Overall Software Architecture
The overall software architecture is shown in Figure 3-5. The executive-level consists of the
Flight_Executive package and the Flight_Executave_Connections package. The

system-level consists of

• <system_name>_System package

a <system_name>_System_Connections package

a <system_naine>_System_Aggregate package

The complete systel-level architecture of the Engine system is shown. The architecture of
the other systems, e.g., the Fuel system and the Electrical system, would be similar.

Each connection package is "nested" within the corresponding system or executive packages.

14 CMU/SEI-88-TR-30

Each connection within the connection packages is distinct, embodied within a separate pro-
cedure.

There is one object manager package per object.11

Flight_Executive

Flight_Executive_Connections Engine_System

C=ZD
X

Electric al_System

S
O

Engine_System_Aggregate Engine_System_Connections

Fuel_System

iTiiiiiTiinr.

I T T T
Rotor 1_OM Rotor2_OM BurnerOM BleedValveOM DiffuserOM FanDuct OM ExhaustJDM Engine_Casing_OM

f
!

* L

) ()
I 1 1 1

tmv.vi.vf
.

i_ ±
s?

,* *
1 n ' h"i h-^ , i 9

i
(1

t"-Vtf//M

i_

OM - Object_Manager

Figure 3-5: Overall Software Architecture

11 Note the object managers have no dependency on other modules.

CMU/SEI-88-TR-30 15

16 CMU/SEI-88-TR-30

4. Paradigm Description

The example used to illustrate the paradigm is a turbofan engine. Engines, in flight training
simulators, interact with a variety of other systems on the aircraft, including the Fuel sys-
tem, the Oil system, the Starter system, the Electrical system, and the Hydraulic system.
The engines also provide bleed air for Cabin Pressure and Air Conditioning systems.

Section 4.1 describes the engine components and the interaction of the engine with the other
aircraft systems and the outside environment. The following section, Section 4.2, describes
the Engine object diagram and, briefly, the meaning behind each icon on the diagram. The
rest of the chapter introduces the paradigm by discussing the implementation of the Engine
system.

4.1. Engine Description
Figure 4-1 shows a diagram of a turbofan engine with the relevant parts labeled. The
Engine Casing encloses the other engine parts and provides the conduit through which the
air flows as it interacts with the other parts. Air enters the Diffuser at some temperature,
pressure, and flow rate. The Fan Duct directs part of the air flow out of the engine to
provide some thrust to the Airframe system of the aircraft. The initial set of blades on the
two Rotors adds energy to the air by compression. The Burner, or combustion chamber,
adds more energy to the air by mixing fuel, from the Fuel system, with the air and igniting
the mixture with a spark from the Ignition system. The second set of blades on the Rotors
removes some energy from the air to turn the Rotor shafts and their initial set of blades.
Finally, the Exhaust provides additional thrust on the Airframe system.

4.2. Engine Object Diagram
The Engine object diagram in Figure 4-2 is another representation of the Engine shown in
Figure 4-1. All the functionality apparent from Figure 4-1 is evident in Figure 4-2. In
addition, the Engine object diagram identifies the objects which comprise a generic turbofan
engine and the engine's relationship with the outside environment. The correspondence be-
tween the real-world components of the engine and the object components in the object

CMU/SEI-88-TR-30 17

Diffuser Fan Duct Burner

Inlet air

Inlet air

Engine Casing

Exhaust

Rotorl Rotor2

(Bleed valve - not shown)

Figure 4-1: Turbofan Engine Description

diagram represents the first of two meanings for object-orientation in this solution.12 The
choice of objects may not be ideal but, for the purposes of the discussion in this report, this
set of objects is acceptable. (The Engine object diagram, Figure 4-2, will be referred to
throughout the rest of this chapter.)

There are four icons on the object diagram to represent four kinds of entities—objects, con-
nections, systems, and executives.

The square boxes within the rectangle represent the engine objects. The objects are:

• Diffuser

• Rotorl

• Fan Duct

• Rotor2

• Burner

• Bleed Valve

• Exhaust

• Engine Casing

The function of the objects is to map their inputs to their outputs. Objects in the real-world
know nothing of their environment, neither the objects which depend on them nor the objects
upon which they depend. We model objects the same way.

12The second meaning for object orientation is described in Section 4.3.

18 CMU/SEI-88-TR-30

Figure 4-2: Turbofan Engine Object Diagram

CMU/SEI-88-TR-30 19

The Engine Casing object is the object through which the air flows as the air passes
through the engine. Each object has some dependency on the air flow, as it passes through
the Engine Casing, denoted by the arrows between the Engine Casing and the other
objects Thus, the Rotor 1 Fanl Inlet air pressure, temperature, and flow comes from the
Engine C?8 sing. Also, each object has outputs needed by the Engine Casing, e.g., the
Rotorl Fanl Discharge air pressure, temperature, and flow are available to the Engine
Casing.

Each engine object in the Engine object diagram interacts with its external environment as
defined by the diagram. No other dependencies on the outside world should be necessary
except for those shown in the diagram. The diagram serves as a specification for the Engine
system interfaces. Given such a diagram and the paradigm description that follows, the
design of the Engine system is complete.

The arrows represent connections. A connection moves information between objects. An
arrow points in the direction of data flow, e.g., a datum, called mach number, flows from the
Airframe system to the Diffuser object, and other information flows from the Exhaust ob-
ject to the Airframe system and the Instrumentation system. 14A double-headed arrow
represents two single-headed arrows, one pointing in each direction. The arrows are always
labeled with the state information that is passed between the objects. The label nearest the
tail of an arrow names the data flowing toward the head of the arrow.

On the Engine object diagram, the Engine system is the area within the large, round-
cornered rectangle (roundtangle). The roundtangles external to the Engine system represent
other systems in the aircraft, e.g., Electrical system and Fuel system, or in the aircraft's
environment, e.g., the Environment system. A system is composed of its objects and the
connections between the objects. These connections are called system-level connections.
Thus, the Engine system is made up of the engine objects and the connections between them
inside the roundtangle. An aircraft simulator for a multi-engine aircraft would have multi-
ple engine systems. Each would be handled identically internally but would have different
connections to the outside world.

A system provides two abstractions. First, a system logically groups a set of objects and their
connections. Second, a system provides an update abstraction to update the objects as a unit
in order to maintain system state consistency. The system performs the update by gating,
i.e., processing, all of its system-level connections.

The final icon on the Engine object diagram is the executive, represented by the heavy, gray
outline. An executive groups a community of systems and coordinates time for the commu-
nity, i.e., provides an ordered update of all the systems. The connections between systems
are executive-level connections. An ordered update of a system consists of two steps:

wIn actuality, all connections are between objects. So, more correctly, the mach number flows from some object in
the Airframe system to the Diffuser object in the Engine system. This point will be elaborated in later sections of
this report.

20 CMU/SEI-88-TR-30

• gating the executive-level connections and

• calling the system to perform its update.

The object diagram thus depicts natural, real-world entities, such as objects and systems,
and entities that originate from the commitment to run the simulator on a computer, i.e.,
connections which move data and executives which control time and allocate resources, such
as the CPU. Each of the abstractions—objects, connections, systems, and executives—will be
discussed in more detail in the rest of this chapter.

4.3. Object Abstraction

This section describes an object abstraction assuming the objects are identified. The engine
diagram in Figure 4-2 will serve as an example.

Objects correspond to real world entities. Objects generalize behavior, i.e., they know noth-
ing about their environment and they are identical in each of the engines in a multi-engine
system. They only differ in how they are connected to their environment. The objects,
however, have no knowledge of these connections.15

A snapshot of the latest external effects is retained in the objects. The outputs (also called
the state of the object), which are readable at any time, are always consistent with the latest
snapshot. The function of the objects is to map from the inputs to the outputs.

4.3.1. Object Managers
Each object is represented by an object manager. There is a single object manager for all
instances of the object.16 Referring to the Engine object diagram, Figure 4-2, there will be an
object manager for each of the objects in an engine:

• Diffuser

• Rotor 1

• Fan Duct

• Rotor2

• Burner

• Bleed Valve

• Exhaust

• Engine Casing.

The object manager defines the attributes of the object. The attributes are invariant charac-
teristics defined at elaboration, e.g., an ampere rating of a circuit breaker.

15Coimections are described in Section 4.4.

16The term manager is used because all access to each object is administered through the interface defined by the
object manager.

CMU/SEI-88-TR-30 21

The object manager defines the operational state of the object. The operational state refers to
those characteristics which may change with time, e.g., the frictional state of a rotor, mal-
functions, or aging effects on various components.

The object manager allows the object's environmental effects to be placed on the object. The
environmental effects are external object states which are required by the object to deter-
mine its state. The environmental effects are placed on an object by connecting procedures.
The procedures defined for these operations are described in Section 4.3.3.

The object manager implements the math model for the object. The math model is imple-
mentation dependent. The math model maps the object's inputs to its outputs.

The object manager produces the outputs available from the object. The outputs are gener-
ated by the math model, using the environmental effects placed on the object and any addi-
tional constraints imposed by the attributes and the operational state of the object. The
math model may be invoked when environmental effects are placed on the object or when
outputs are read from the object. This is an implementation level decision left to the system
designer; it is not defined by the paradigm.

The object manager defines an interface to the operations available on an object. The opera-
tions allow the placing of environmental effects, updating the operational state, and reading
the outputs of the object.

The actual instances of the object are stored in object aggregates which are discussed in
Section 4.5.1. An aggregate allows named access to the objects; no procedure call is required
to retrieve the object.

Finally, the object manager is independent of the rest of the system. The only compilation
dependencies are on global types.

4.3.2. Object Manager Structure
The representation of the object in an object manager is declared as a private type in the
package specification.17 Figure 4-3 is a partial package specification containing typical type
definitions found in an object manager.18 Use of a private type allows external access to the
object, through the operations provided, while hiding the details of the object's implemen-
tation. In addition, the package specification must define all the types used to describe the
object's attributes, the operational state, and the placeholders for environmental effects.

17For example, "type Burner is private" in Figure 4-3.

18Package Standard_Engineering_Typea, withed at the beginning of Package Buraer_Object_Manager in
Figure 4-3, contains global definitions for typical simulator types. The package is shown in Appendix Section C.2.

22 CMU/SEI-88-TR-30

with Standard_Engineering_Types;

package Bumer_Object_Manager is

package Set renames Standard_Engineenng_Types;

type Burner is private ;
- an Burner is an abstraction of a Burner within an Engine.

type Spark is (None, Low, High);
- burner needs only to know relative spark size

type Fuel_Flowis (None, Flowing);
— the burner needs to know only if it has fuel available

function New_Burner return Burner,

procedure Give_Inlet_Air_To
(A_Burner : in Burner;
Given_Inlet_Pressure : in Set.Pressure;
Given_Inlet_Temperature : in Set.Temperature;
Given_Inlet_Air_Flow : in Set.Air_Flow);

procedure Get_Discharge_Air_From
(A_Burner: in Burner,
Returning_Discharge_Pre8sure : out Set.Pressure;
Returning_Discharge_Temperature : out Set.Temperature;
Returning_Discharge_Air_Flow : out Set.Air_Flow);

procedure Give_Fuel_Flow_To
(A_Bumer : in Burner;
Given_Puel_Flow: in Fuel_Flow);

procedure Give_Spark_To (A_Bumer : in Burner,
Given_Spark : in Spark);

pragma Inline (Give_Inlet_Air_To,
Get_Discharge_Air_From,
Give_Fuel_Flow_To,
Give_Spark_To)

private
type Bumer_Representation;
~ incomplete type, defined in package body

type Burner is access Bumer_Representation;
— pointer to an Burner representation

end Bumer_Object_Manager;

Figure 4-3: Burner_Object_Manager Package Specification

19For the Burner Object Manager in Figure 4-3, type definitions for Spark and Fuel_Flow
are provided. In the private part of the package specification, the object's private type is

19The attributes and operational state variables must be visible to the system aggregate package which instan-
tiates the object and to the system-level and executive-level connections packages which use the object's types and
operations. See Sections 4.4, 4.5, 4.5.1, and 4.6 for descriptions of connections, systems, aggregates, and executives,
respectively.

CMU/SEI-88-TR-30 23

declared as an access pointer to a data type which will be the actual representation of the
object. The data type is an incomplete type, the details of which are delayed until the pack-
age body.20

The objv^t';"' data representation, defined in the package body, must allow for storage of en-
vironmental effects and reading of the object's outputs. A typical implementation is a record
with components for each of the object's attributes, operational state variables, and
placeholders for the environmental effects. Each attribute component must have a default
value and each operational state variable should have an initial state value. Figure 4-4
contains an incomplete package body for the Burner object manager. The
Burner^Representation is a record with fields for environmental effects, e.g., inlet air pres-
sure, temperature, and flow, fuel, and spark values. The record also has fields for output
values, e.g., discharge pressure, temperature, and flow.

package body Bumer_Object_Manager is

type Burner_Representation is
record

Inlet_Air_Pressure : Set.Pressure := 0.0;
Inlet_Temperature : Set.Temperature := 300;
Inlet_Air_Flow : Set-Air_Flow := 0.0;
The_Spark : Spark := High;
The_Puel : Puel_Flow := Flowing;
Discharge_Air_PresBure : Set.Pressure := 0.0;
Discharge_Temperature : Set. Temperature := 300;
Discharge_Air_Flow : SetAir_Flow := 0.0;

end record ;

— Subprogram bodies go here

end Bumer_Object_Manager;

Figure 4-4: Burner_Object_Manager Package Body

4.3.3. Object Manager Operations
There are three types of operations within each object manager. There is also a standard
naming convention for these operations. One side effect of the naming convention is that all
object managers begin to look very similar. The similarity can be exploited to create an
object manager template, see Chapter 5, which can be used to generate new object managers.

The first type of operation is used to create new instances of the object. This operation is a
function, named New_<object>21, which returns an instance of the private type, <object>.

20See Appendix Section C.4 for the complete Package Specification for the Burner object. Appendix C provides an
implementation of the Engine system through the Ada specifications.

21The use of "<...>" within subprogram names, type names, or text refers to a general case of the item. For
example, New_<object>, is the general form representing all instances of the New function, e.g., New_Burner,
New_Rotorl,New_Exhauet, etc. See Chapter 5 for a more detailed discussion and examples of the use of "<...>".

24 CMU/SEI-88-TR-30

For example, in Figure 4-3, the function provided by the Burner object manager is called
New_Burner; it returns an instance of the private type, Burner. This private type is a
pointer to a new instance of the data type representing the object.22 In addition, values for
attributes or operational state variables, which need their default values changed or their
initial values defined, may be set by the New_<object> function. Typically, this function is
called at elaboration, i.e., during system initialization. The return value, a pointer which is
the "ID" of the new object, is stored and used to access the object in later operations. See
Section 4.5.1 for more discussion on this point.

The second type of operation is used to write external effects, i.e., environmental effects and
operational state changes, on an object. The naming convention for this operation is
Give_<external_effects>_To. The operation takes the object private type and either exter-
nal environment values or new operational state values as arguments. In Figure 4-3, the
procedure Give_Inlet_Air_To is an example of this type of operation.

The characteristics of the Give_<external_effects>_To procedure are as follows:

• report external environmental effects to the object. The stored values of the
environmental effects will be used the next time the object's outputs are cal-
culated. These updates are typically under the control of a cyclic executive and
are placed on the object one or more times each cycle.

• report a change in the operational state to the object. The stored values of the
operational state variables will be used the next time the object's outputs are
calculated. These changes are typically asynchronous events triggered by the
instructor at the IOS.

• the environmental effects and operational state variables are "saved" with the
object in the private data structure.

• the environmental values stored with the object are consistent with the external
effects at all times.

Ideally, the math model isolates the individual effects of the environmental effects. Calcula-
tion of the object's outputs can be postponed until the object's internal state is read.

The interfaces denned by the Give_<external_effects>_To operations can be read directly
off the object diagram, Figure 4-2. There will be one procedure per dataflow arrow. For
example, in Figure 4-3, procedure Give_Inlet_Air_To, for the Burner object manager,
takes the pressure, temperature, and air flow as arguments.

The third type of operation is used to read an object's outputs. The outputs are calculated by
the math model using the environmental effects placed on the object and any additional

There are other options for managing storage allocation for the objects. One is to use the allocator directly,
within the system aggregate package, rather than performing the function call to New_<object>. But then the type
<object>_Representation would have to be visible. A second method would be to build an alternate allocator
using statically defined <object>_Representations. Then each time an <object> had to be allocated, one of the
statically defined instances would be assigned. This approach has merit if garbage collection is an issue. We are
continuing to look into these and other approaches.

CMU/SEI-88-TR-30 25

constraints imposed by the attributes and the operational state of the object. The naming
convention for this operation is Get_<object_output>_From. The operation takes the ob-
ject private type as an argument and returns the object's outputs. In Figure 4-3, the proce-
dure Get_Discharge_Air_From is an example of this type of operation.

The characteristics of the Get_<object_output>_From operation are as follows:

• the response reflects the current state of the object. The state is dependent on
the environmental effects previously placed on the object, the object's attributes,
and the object's operational state. The outputs are read from the private data
structure or calculated from the values stored in the data structure.

• the output state of the object is consistent with the external environmental ef-
fects at all times

• each operation is specific to the object and the output of the object that it reports.
This operation is the only way to access the object's output.

The interfaces defined by the Get_<object_output>_From operations can be read directly
off the object diagram, Figure 4-2. There should be one procedure per dataflow arrow. For
example, in Figure 4-3, procedure Get_Discharge_Air_From, for the Burner object man-
ager, returns the pressure, temperature, and air flow.

The output state of an object, determined from its environmental effects, attributes, and
operational state, may be calculated either when new external information is written to the
object (and then the output state should be stored with the object), by the
Give_<erternal_erTects>_To procedure, or when outputs are read from the object, by the
Get_<object_output>_From operation. In the first case, each time an external effect is
deposited, a new output state should be calculated and stored so that the correct output state
can be returned on subsequent read operations. Since each external effect is independent of
all others, the object's output state will be consistent at all times. In the second case, an
object's output state is not stored, but calculated each time the outputs are read. The deci-
sion as to which implementation to use is up to the implementor of the system. That level of
detail is not specified in the paradigm.

4.3.4. Advantages of the Object Abstraction
The object abstraction developed here is the second of two meanings of object orientation.23

The object abstraction includes:

• the packaging strategy used, i.e., private types and local data stored with the
object

• the object operations which are intentionally designed without side effects

• the objects which are stand-alone with no dependencies on other entities in the
solution

Thus, there is a natural progression from real-world entities to design objects and from de-
sign objects to a consistent software representation.

^The first was the correspondance between real-world entities and design objects on page 17.

26 CMU/SEI-88-TR-30

The implementation of objects follows the standard model for object-oriented abstraction.
The object managers embody the state of objects, and changes in the objects' environment are
placed on the objects procedurally. The major difference is the removal of connections from
the objects (connections are described in Section 4.4). This decision supports separate devel-
opment of objects since there is no dependency on any modules other than global types. In
addition, spaghetti compilation dependencies are prevented. Finally, reuse is supported,
since data-type differences between objects are not an issue.

Another advantage of the object managers is to focus the addition of details in one place. For
example, if there is loss of efficiency in the movement of air through the Burner, the loss can
be modeled in the object manager for the Burner. Also, malfunctions in components can be
simulated in the objects. The introduction, handling, and reporting of a malfunction should
be introduced at the object manager level.

4.4. Connection Abstraction

In the real-world, laws of nature or physics govern the transfer of state information between
objects. For example, heat provided by the Burner is transferred to the air flowing through
it. Futhermore, the laws of nature function continuously on a single "processor" without
regard for units of measurement or other information.

In a computer system, state information must be transferred explicitly among objects that
are updated in discrete time on multiple processors and must be transferred with some type
of units.

This section describes connections, the mechanism for transferring state information be-
tween objects. Connections do not correspond to real-world entities such as wires or pipes.
Connections simply model the proximity of one object to another in the real-world.

4.4.1. Overview of Connections
The connections in Figure 4-2 are represented by arrows. An arrow points in the direction of
data flow. A double-headed arrow represents dataflow in both directions.

Connections also provide a means to transfer information between physical objects and soft-
ware objects. Buffers can exist between physical objects and the software system. The
buffers may be, for example, a linkage buffer between the software and the simulator
hardware, an Instructor Operator Station (IOS) buffer between the software and the IOS
station, or buffers between processors in a multi-processor configuration. In all these cases,
the connection handles the transfer of environmental effects or operational state information
from the buffer (the representation of the physical object) to the software objects and the
transfer of object state from the software objects to the buffer. For example, software lights
in the electrical system can be turned on and off as a result of external environmental effects

MOne of the roles of connections is to convert types when necessary, see Section 4.4.

CMU/SEI-88-TR-30 27

or operational state changes. These effects must be transferred to the simulator cockpit and
affect a change in the physical lights. Lights can also be turned on and off in the simulator
cockpit by the students. These effects must be transferred to the software and change the
operational state of the software lights. The linkage buffer between the cockpit and the
software is used and connections handle the information flow.

Finally, the updating of a system is accomplished by moving information along connections ,
i.e., gating the executive-level and system-level connections in order.

4.4.2. Procedural Abstraction
The connections between objects are captured procedurally, using the object operations. All
connections between objects within systems and between systems are modeled this way.
These operations, defined with the object, allow for writing information to the object and
reading information from the object. See Section 4.3.3 for more discussion on the object
operations.

Thus, the connecting procedures exist outside the object managers, but have visibility into
the object managers.

The connecting procedures need to perform three steps:

• obtain the needed information directly from an object

• convert the information if necessary

• put the information directly onto another object

Each step is discussed in more detail in the following sections.

4.4.2.1. Get Needed Information
The initial step is to obtain the external information which must be placed on an object. The
provider of the information is defined within an object diagram at the tail of each arrow, as
in the Engine diagram, Figure 4-2. The provider will be either an object in an external
system, e.g., the Fuel system or Ignition system, or another object within the Engine system.

If the provider is from an external system, the procedure modeling the connection must have
access into the objects of each system. Thus the procedure needs to exist at the next higher
level of abstraction, i.e., within the enclosing executive. These connections are called
executive-level connections. Within the executive connection procedure, local variables may
exist to allow for temporary storage of the information, as in Figure 4-5. The current value of
spark, from the Ignition object manager, is obtained with a call to Get_Spark_From and
stored in the local variable Some_Spark. Thus, although the paradigm does not advocate
careless data-typing, it recognizes that perfect type matches between objects will not always
be possible.

If the provider is from another object within the Engine system, then the enclosing scope of
the objects, i.e., the Engine system itself, handles the connection. These connections are

•called system-level connections. Figure 4-6 shows the connection between the Diffuser and

28 CMU/SEI-88-TR-30

with Standard_Engineering_Types;
with Engine_System_Aggregate;
with Ignition_System_Aggregate;

with Flight_System_Names;

with Bumer_Object_Manager;
with Ignition_Object_Manager,

separate (Flight_Executive_Connection_Manager)

procedure Proces8_Extemal_Connections_To_Engine_System is

Integrated_Drive_Energy : Generator_Object_Manager.Energy;

Some_Spark : Ignition_Object_Manager.Spark;
The_Burner_Spark: Bumer_Object_Manager.Spark;

function Spark_Conversion (In_Spark : in Ignition_Object_Manager.Spark)
return Burner_Object_Manager.Spark is

begin
case In_Spark is

when 0 .. 2 =>
RETURN Burner_Object_Manager.None;

when 3 .. 9 =>
RETURN Bumer_Object_Manager.Low;

when 10 .. 20 =>
RETURN Bumer_Object_Manager.High;

end case ;
end Spark_Conversion;

begin - Pjvcess_ExteTmal_ConnectionsJTo_Engine_System

for An_Engine in Flight_Systems_Names.Aircraft_Engines loop

Some_Spark := Ignition_Object_Manager.Get_Spark_From
(A_Ignition => Ignition_System_Aggregate. Ignitions

(Engines_To_Ignition_Map (An_Engine)));

The_Bumer_Spark := Spark_Conversion (Some_Spark);

Bumer_Object_Manager. Give_Spark_To
(A_Bumer => Engine_System_Aggregate. Engines

(An_Engine).The_Burner,
Given_Spark => The_Bumer_Spark);

end loop ;
end Process_Extemal_Connections_To_Engine_System;

Figure 4-5: Executive-Level Connection -
Spark Conversion Routine

the Engine Casing. The discharge air pressure, temperature, and flow are obtained from
the Diffuser with the call to Get_Discharge_Air_From.

4.4.2.2. Convert Information
The connecting procedures encapsulate type conversions. Each object manager maintains
the state of the object in the units which make sense to that object. The connecting proce-
dures handle the type conversions which are necessary between the object managers.

CMU/SEI-88-TR-30 29

with Flight_System_Names;
with Engine_System_Aggregate;

with Diffuser_Object_Manager;
with Engine_Casing_Object_Manager;

package body Engine_System is

procedure Update_Engine_System is

Diffuser_Discharge_Pressure : Set.Pressure;
Diffuser_Discharge_Temperature : Set.Temperature;
Diffuser_Discharge_Air_Flow : Set.Air_Flow;

begin
for An_Engine in Fught_System_NamesAircraft_Engines loop

Model the connection characterized by the dependence of the
Engine Casing on the Diffuser for Pneumatic .Energy.

Diffuser_Object_Manager.Get_Discharge_Air_From
(A_Diffuser =>

Engine_System_Aggregate.Engines
(Given_Engine_Name).The_Diffuser,

Returning_Discharge_Pressure =>
Diffuser_Discharge_Pressure,

Returning_Discharge_Temperatvire =>
Diffuser_Discharge_Temperature,

Retuming_Discharge_Air_Flow =>
Diflu8er_Discharge_Air_Flow);

Engine_Caaing_Object_Manager.Give_Air_Flow_To
(A_Engme_Casing =>

Engine_System_Aggregate.Engines
(Given_Engine_Name).The_Engiiie_Casing,

Given_Air_Flow => Difluser_Discharge_Air_Flow);

end loop ;
end Update_Engine_System;

end Engine_System;

Figure 4-6: System-Level Connection

In Figure 4-5,25 the intermediate value, Some_Spark, obtained during the get information
step above, is converted to the local variable The_Burner_Spark by the function
Spark_Conversion. The_Burner_Spark is defined in terms of the spark type in the
Burner object manager.

25The notation used in Figure 4-5, Engine_System_Aggregate.Engine» (An_Engine).The_Burner, is part of
the Engine Aggregate nomenclature discussed in Section 4.5.1.

30 CMU/SEI-88-TR-30

There are two reasons for managing type conversions within the connection procedure.
First, the object managers are then free from inter-object type dependencies. The object
managers become stand-alone, with no dependencies other than on global data types. Thus,
the object managers become reusable units. Separate development of the object managers is
also supported. The second reason is that each object manager has a different need. There is
no reason to expect that the Burner object manager would have a need to know how the
Ignition object manager maintains the spark state. For example, the spark from the
Ignition object manager may be in volts while the Burner maintains the value as an
enumerated type (see Figure 4-5).

4.4.2.3. Put Converted Information
The final step is to place the external environmental information on the object being up-
dated. The information must be in the proper type to match the dependent object. Once
again, a picture, like that in Figure 4-2, defines the destination for the environmental infor-
mation. The procedures Give_Spark_To, in Figure 4-5, and Give_Air_Flow_To, in Figure
4-6, are examples of put information operations.

4.4.3. Advantages of Connections
The implementation of connections in connecting procedures, as described in this chapter,
provides a consistent and natural interface to the objects.

The connections insulate the objects from compilation dependencies. Objects and systems
become stand-alone. Each can be developed independently. Connecting procedures provide a
firewall: changes in implementation to objects on one side of a connection do not affect the
implementation of objects on the other side.

Connections facilitate independent development and reuse. In particular, connecting proce-
dures provide a systematic way to handle typing mismatches. The type conversions between
objects are easily managed since the connecting procedures have visibility into the objects.

Connecting procedures provide a consistent means of updating systems and objects. Thus,
connecting procedures provide a means for specifying control flow. No extraneous concepts
or operations are required.

Finally, the connecting procedures provide a locus of control since all connections at an ab-
straction level are handled in one place.

4.5. System Abstraction

To this point we have denned objects and the connections between them. This section dis-
cusses a method for grouping the objects and connections together into a logical scope.

A system is an aggregation of objects (and the connections between the objects) with a com-
mon goal. For example, the objects making up the Engine system provide thrust; the objects
of an Electrical system provide power. The system (objects and connections) is updated as a
single entity.

CMU/SEI-88-TR-30 31

Thus, a system presents two abstractions. The first is the aggregation of objects accessible
by name outside the system, as discussed below. The second is the set of connections be-
tween the objects of the system; these system level connections are not visible to the execu-
tive lev*l. The set of connections allows for an ordered update of the system as a unit.

A system update requires nothing more than gating the system level connections as de-
scribed in Section 4.4. Objects outside the system are not accessed during the system up-
date. The update is initiated by a procedure call from the executive to the system.

4.5.1. System Aggregates
A real-world system usually consists of collections of objects. An aggregate creates and
names a collection of objects. An aggregate is a data structure containing the name of each
object. Objects are accessed by name. A procedure call is not required to obtain a "pointer"
to an object being accessed.

4.5.1.1. Building an Aggregate
As was described in Section 4.1, an engine is a collection of objects, including the diffuser,
rotors, a burner, and so forth. Each object is managed by its own object manager. An engine
record can be constructed as a grouping of these objects (see the Engine_Representation in
Figure 4-7).

with Bumer_Object_Manager;
with Bleed_Valve_Object_Manager;
with Diffiiser_Object_Managei",
with Engino_Casing_Object_Manager;
with Exhaust_Object_Manager;
with Fan_Duct_Object_Manager,
with Rotorl_Object_Manager;
with Rotor2_Object_Manager,

package Engine_System_Aggregate is

type Engine_Representation is
record

— Defines an engine representation as consisting of:
The_Diffuser : Difluser_Object_Manager.Difiiiser;
The_Rotorl : Rotorl_Object_Manager.Rotorl;
The_Fan_Duct : Fan_Duct_Object_Manager.Fan_Duct;
The_Rotor2 : Rotor2_Object_Manager.Rotor2;
The_Bleed_Valve : Bleed_Valve_Object_Manager.Bleed_Valve;
The_Bumer : Bumer_Object_Manager.Bumer;
The_Exhaust : Exhaust_Object_Manager.Exhaust;
The_Engine_Caaing: Engine_Casiiig_Object_Manager.Engine_Casing;

end record ;

end Engine_System_Aggregate;

Figure 4-7: Engine Representation Example

For an aircraft as a whole there may be several engines. Using a constant array, an aggre-
gate of the engines can be created which stores references to Engine_Representations, one

32 CMU/SEI-88-TR-30

for each engine on the aircraft (see Figure 4-8). The constant array, Engines, is created at
elaboration time. Each object is instantiated by a call to the function New_<object>, de-
scribed in Section 4.3.3, with all initial conditions set by default. The pointer to the private
type returned by the function is stored with the name of the object. Thus, reference to the
object can be done by name. The aggregate data structure is visible so no procedure call is
required to retrieve an object. The array is indexed by the enumerated engine names
Engine_l.JEngine_4. The engine names are defined in a global type package that defines
all the system names.

The constant array, Engines, is defined in a package specification to allow access to the
Engine system by an external system which withs the package and the appropriate object
managers. The aggregate and object managers are used by the connecting procedures, dis-
cussed in Section 4.4.3, to reference the necessary objects. All references to objects are done
through the aggregates. An object in an engine is referenced as:

Engines(Engine_Name).The_<object>

For example, the Diffuser of Engine 1 is referenced as:
Engines(Engine_ 1).The_Diffu8er

and the Rotor 1 of Engine 3 is referenced as:
Engines(Engine_3).The_Rotorl

The code fragment, in Figure 4-6, shows how to reference an Engine object using the Engine
aggregate. The Discharge Air is read from the Diffuser object using the reference,
Engine_System_Aggregate.Engines (Given_Engine_Name).The_Diffuser and written
to the Rotorl object using the reference, Engine_System_Aggregate.Engines
(Given_Engine_Name).The_Rotorl.

4.5.2. Updating
The existence of systems allows the processing of the enclosed objects to be done as a unit.
The process of updating a system occurs in two steps (Figure 4-10):

• the executive processes the executive level connections, see Section 4.6.1)

• the system processes the system level connections

The operations are done atomically for each system. This means that when it is time to
update a system, all work necessary to complete both steps of the update is finished before
the process is begun on another system.

Processing the executive level connections involves gating the connecting procedures, as de-
scribed in Section 4.4. The external effects, i.e., effects from objects external to the system
being updated, are placed on the system objects by the connecting procedures at the execu-
tive level.

Once all the external effects have been placed on the system objects, then the system level
update is initiated by a single procedure call, Update_<system_name>_Systeni, to the sys-
tem.

CMU/SEI-88-TR-30 33

with Flight_System_Names;
with Bumer_Object_Manager;
with Bleed_Valve_Object_Manager;
with DifFuser_Object_Manager;
with Engine_Casing_Object_Manager;
with Exhaust_Object_Manager;
with Fan_Duct_Object_Manager;
with Rotorl_Object_Manager,
with Rotor2_Object_Manager,

package Engine_System_Aggregate is

Engines : constant array (FlightJ5ystem_Names.Aircraft_Engines) of
Engine_Representation :=

(Flight_System_Names.Engine_l =>
(The_Diffuser => Diffiiser_Object_Manager.New_DifFuser,
The_Rotorl => Rotorl_Object_Manager.New_Rotorl,
The_Fan_Duct => Fan_Duct_Object_Manager.New_Fan_Ehict)

The_Rotor2 => Rotor2_Object_Manager.New_Rotor2,
The_Bleed_Valve => Bleed_Valve_Object_Manager.New_Bleed_Valve,
The_Bumer => Bumer_Object_Manager.New_Bumer,
The_Exhaust => Exhaust_Object_Manager.New_Exhauat,
The_Engine_Casing =>

Engine_Casing_0bject_Manager.New_Engine_Ca8ing),

Flight_System_Names.Engine_2 =>
(The_Difruser => Diffuser_Object_Manager.New_DifFu8er,
The_Rotorl => Rotorl_Object_Manager.New_Rotorl,
The_Fan_Duct => Fan_Duct_Object_Manager.New_Fan_Duct,
The_Rotor2 => Rotor2_Object_Manager.New_Rotor2,
The_Bleed_Valve => Bleed_Valve_Object_Manager.New_Bleed_Valve,
The_Bumer => Bumer_Object_Manager.New_Bumer,
The_Exhauat => Exhaust_Object_Manager.New_Exhaust,
The_Engine_Casing =>

Engine_Casing_Object_Manager.New_Engine_Casing),

FKght_System_Names.Engine_3 =>
(The_DifiTiser => Difruser_Object_Manager.New_Di£Fuser,
The_Rotorl => Rotorl_Object_Manager.New_Rotorl,
The_Fan_Duct => Fan_Duct_Object_Manager.New_Fan_Duct,
The_Rotor2 => Rotor2_Object_Manager.New_Rotor2,
The_Bleed_Valve => Bleed_Valve_Object_Manager.New_Bleed_Valve,
The_Bnmer => Bumer_Object_Manager.New_Burner,
The_Exhaust => Exhaust_Object_Manager.New_Exhau8t,
The_Engine_Casing =>

Engine_Casing_Object_Maiiager.New_Engine_Casing),

Flight_System_Names.Engine_4 =>
(The_Difluser => Difniser_Object_Manager.New_Di£Fuser,
The_Rotorl => Rotorl_Object_Manager.New_Rotorl,
The_Fan_Duct => Fan_Duct_Object_Manager.New_Fan_I>uct)

The_Rotor2 => Rotor2_Object_Manager.New_Rotor2,
The_Bleed_Valve => Bleed_Valve_Object_Manager.New_Bleed_Valve,
The_Bumer => Bumer_Object_Manager.New_Burner,
The_Exhaust => Exhaust_Object_Manager.New_Exhaust,
The_Engine_Casing =>

Engine_Caaing_Object_Manager.New_Engine_Casing));
end Engine_System_Aggregate;

Figure 4-8: Engine Aggregate Example

For the Engine system example, the external connections which need to be processed are

34 CMU/SEI-88-TR-30

those from systems outside the Engine system, e.g., the Fuel system. These connections are
handled at the executive level. Then the Engine system is updated, via the procedure
Update_Engine_System (Figure 4-10). Performing the system level update involves proc-
essing the connections at the system level. The connection representing the dependency of
the Rotorl on the Engine Casing ibr air flow, temperature, and pressure is shown in
Figure 4-6. The update procedure is dependent on the Engine Aggregate and the object
managers.

4.5.3. Advantages of Systems
The implementation of systems, as described in this chapter, encapsulates objects and con-
nections within a logical scope. A system needs to access only its aggregated objects, the
global types used by the objects, and the system level connections.

This separation of concerns allows for several things:

• reduction of the impact of compilation dependencies. Systems become stand-
alone. Connecting procedures provide a firewall; changes in implementation to
objects in a system on one side of a connection do not affect the implementation
of objects in another system on the other side.

• separate development of components and reuse. Systems are self-contained.
The only dependencies are on global types and object managers.

• potentially easy disbursement within a multi-processor environment (more on
this in Section 6.1).

4.6. Executives

An executive is a community of systems. For example, the Flight Executive contains the
Engine system, the Electrical system, the Fuel system, etc. The executive controls the up-
dating of all the systems within its scope. The executive handles all connections between its
systems, e.g., those between the Engine system and the Fuel system. In a multi-processing
environment, in this model, there would be one executive level per processor. The executive
would have access to buffers for communication between the processors. However, the
synchronization among the processors would happen outside the executive.26

4.6.1. Implementation of an Executive
All the systems within the executive's scope are known to the executive, as are all the objects
in those systems. The executive has an activity table,27 indexed by system names, which
defines a processing order for those systems. An implementation for use within a cyclic
executive is shown in Figure 4-9. The constant array, Its_Time_To_Do, defines the frame

26For this domain, in order to meet the required deterministic real-time schedule, Ada tasking is not a viable
solution. In our view, the executive functions like an abstraction of a CPU. The scheduler, that is shown in Figure
4-9, replaces the Ada tasking model at run-time.

27The nature of the activity table is not a concern of the paradigm. More elegant and powerful implementations
are possible.

CMU/SEI-88-TR-30 35

with Global_Types;
with Flight_System_Names;

package body Flight_Executive is

type Active_In_Frame is
array (Flight_System_Name8.Name_0f_A_Flight_System) of Boolean;

Its_Time_To_Do : constant array (Global_Types.Execution_Sequence) of
Active_In_Frame :=

(Global_Types.Frame_l_Modules_Are_Executod =>
(Flight_System_Name8. Engine => (True), others => (False)),

Global_Types. Frame_2_Modules_Are_Executed =>
(Flight_System_Names.Electrical => (True), others => (False)),

Global_Types.Frame_3_Modules_Are_Executed => (others => (False)),
Global_Types.Frame_4_Modules_Are_Exe<ruted => (others => (False)),

Global_Types.Frame_5_Modules_Are_Executed =>
(Flight_System_Names.Engine => (True), others => (False)),

GlobalJTypes.Fraine_6_Modules_Are_Executed => (others => (False)),
Global_Types.Frame_7_Module8_Are_Executed => (others => (False)),
Global_Types.Frame_8_Modules_Are_Executed => (others => (False)));

end Flight_Executive;

Figure 4-9: Executive Activity Table Example

in which each system, e.g., the Engine system and the Electrical system, gets processed. The
processing is actually initiated by the procedure shown in Figure 4-10.

The updating of a system involves writing the external effects on the system and then telling
the system to update itself. These operations for the systems are done atomically. For
example, in Figure 4-10, when it is time to update the Engine system, a call is made to
Flight_Executive_ConnectionsJ?rocess_Fd^ne_Connection8jro. This procedure ac-
cesses the Engine objects directly, using the Engine aggregate, to write external effects onto
the Engine objects. Figure 4-5, page 29, shows such an executive level connecting procedure.
The fragment reads the spark from the Ignition object and writes the spark value to the
Burner object in the Engine system.

Next, the procedure Engine_Sy8tem.Update_Engine_System is called to process the sys-
tem level connections. When this operation is finished, the Engine system update is com-
plete and the system is consistent with all its external effects.

4.6.2. Advantages of Executives
The implementation of executives described in this chapter follows the same model of connec-
tions used at the system level. Additionally, the executive has scheduling information in the
form of an activity table which defines an order for processing its systems. Using the activity
table, tuning of the simulator system by balancing the system processing across the frames
of the cyclic executive is simplified.

36 CMU/SEI-88-TR-30

with Flight_Executive_Connection_Manager;
with Flight_System_Names;

with Engine_System;
with Electrical_System;

package body Flight_Executjve is

procedure Update_Flight_Executive (Frame : in
Global_Types.Execution_Sequence) is

begin
for A_SyBtem in Flight_System_Names.Name_Of_A_Flight_System loop

if Its_Time_To_Do (Frame) (A_System) then
case A_System is

when Flight_System_Names.ElectricaI =>
Flight_Executive_Connection_Manager.

Process_Extemal_Connections_To_Electrical_System;
Electrical_System.Update_Electrical_System;

when Flight_System_Names. Engine =>
Flight_Executive_Connection_Manager.

Proces8_ExtemaI_Connection8_To_Engine_Systein;
Engine_System. Upda te_Engine_Sy stem;

end case ;
end if;

end loop;

end Update_Flight_Executive;

end Flight_Executive;

Figure 4-10: Flight Executive Example

Distributed processing can be handled easily by partitioning executives across the available
processors. More discussion of this topic is in Section 6.1.

4.7. Advantages of the Architecture of the Paradigm
The two main design goals for the paradigm were to eliminate unnecessarily layered objects
and to simplify dependencies among objects. Both goals have been met.

The solution does not contain nested objects and the software architecture is flat. Connect-
ing procedures provide the means of accessing objects for transferring state information. The
connections at the executive level can access all objects, in the systems under the scope of the
executive. Objects are accessed by name through the data structures which aggregate ob-
jects for each system. A procedure call is not required to obtain a "pointer" to the object
being accessed. We assert that the solution is natural. A spark goes to a burner, not to an
engine.

The abstraction of higher-level objects, such as engines, is captured in the notion of a system:
a set of objects updated as an entity. The benefits of nested objects are retained, i.e., high-

CMU/SEI-88-TR-30 37

level objects can be updated and reused as a single entity. This abstraction coupled with the
approach to processing connections facilitates multiprocessing. Placing a set of systems on a
separate processor requires only creating an executive for the processor and making minor
changes to the executive level connections for the processor. None of the system level code

changes.

The major difference between this paradigm and other object-oriented paradigms is the use
of connecting procedures to transfer information. Connecting procedures allow objects and
systems to stand-alone. Each can be developed independently. Connecting procedures pro-
vide a firewall: changes in implementation to objects on one side of a connection do not affect
the implementation of objects on the other side.

Connecting procedures facilitate both independent development and reuse. In particular,
connecting procedures provide a systematic way to handle typing mismatches. It is desir-
able, but not always possible, for two connected objects to use the same types to commu-

nicate.

The software partitioning of connecting procedures simplifies compilation dependencies. All
access to objects happens through connecting procedures. Thus, it is only the procedures
managing connections to a system that need to be recompiled if an object manager specifi-
cation changes. Each of these connecting procedures can be implemented as a separate proce-
dure; in the Ada sense.

Connecting procedures provide a consistent means of updating systems and objects. Thus,
connecting procedures provide a means for specifying control flow. No extraneous concepts
or operations are required.

something

Figure 4-11: Object Dependency Example

Figure 4-11 illustrates some of the flexibility of connections.28 Object B provides object A

28Figure 4-11 is the same as Figure 2-1.

38 CMU/SEI-88-TR-30

with something, i.e., a connection exists, as shown, between A and B. Assume that A and B
are in the same system.

1. If B needs, or is coded with, a different type of something than A then the
connection procedure converts the type.

2. If B moves to a different system, then the ownership of the connection is
changed (from system level to executive level).

3. If B moves to a different processor, then connect the tail of the connection arrow
to a "buffer" representing the other processor (See Section 6.1 for more
information.)

4. If B needs to be stubbed, then the connecting procedure can be used as the
stub.29

The paradigm produces software that is easy to modify. Typical modifications include ad-
justing the distribution of processing among the frames of a cyclic executive, adding malfunc-
tions, adding or removing objects, and modeling wear and aging of components. Examples of
some of the potential modifications are:

1. Moving the update of a system to a different frame requires a change only in
the executive's schedule table

2. Adjusting the air flow, for one of the systems which uses air flow, can be done in
a connecting procedure without worrying about side-effects in the other systems

3. Adding a malfunction to an engine component, the Burner for example, re-
quires only the following:

a. making the malfunction selectable at the Instructor Operator Station
(IOS)

b. adding a connection from the IOS buffer to the Burner

c. changing the model of the Burner.

4. Adding a third compressor stage to the engine will not disturb the major math
models of the engine. It requires only creating the object in software and add-
ing connections to the object from the Engine Casing object

5. Modeling wear on a Rotor bearing requires adding the interface
Time_Has_Pas8ed (Amount: Time) to the object, making a small change to
the private type, and reducing the efficiency of the Rotor in proportion to its
time in service

6. Adding a system to an executive requires creating the system, its connection
and aggregate packages, and the objects necessary to describe the system. The
system's objects need to be accessible by the executive's connection package, see
Figure 3-5, and the system itself needs to be included in the schedule table and
update procedure of the executive. The software architecture tends to grow out
(or flat) not down.

29This technique is used consistently throughout the Engine code in Appendix C. The examples used in this
chapter, for example Figure 4-5 which shows a connection to the Ignition object manager, were constructed for
illustrative purposes only.

CMU/SEI-88-TR-30 39

40 CMU/SEI-88-TR-30

5. Development Process

5.1. Role of the Paradigm

The development of systems using the paradigm is a design activity. The paradigm molds
the designer's analysis of the requirements. The paradigm accommodates objects and con-
nections. The result of the analysis of the requirements is a set of real-world objects and
connections grouped into systems. Once this choice is made, the paradigm dictates the im-
plementation.

The paradigm can be viewed as a means of consistently specifying objects, connections, sys-
tems, and executives. The result is a consistent implementation. Maintainers do not need to
learn the architecture of each system. If the paradigm is followed, all systems will look the
same.

During acquisition, the architecture of each system does not need to be evaluated. The
quality of the architecture that follows from the paradigm needs to be evaluated only once.
Design reviews can focus on the analysis of requirements, the choice of objects and connec-
tions, and system groupings.

5.2. Templates and Reuse

The object diagram, Figure 4-2, used four icons to describe the Engine system. Objects are
represented by rectangles, connections between objects by arrowed lines, roundtangles are
systems, and executives are defined by an irregular shape outlined in gray. Software sys-
tems of flight simulators can be defined in terms of these four icons.

The software architecture, Figure 3-5, can be derived mechanically from the object diagram.
Each of the four icons is associated with its own set of one or more software package
templates. Relationships among the software package templates are homomorphic to the
relationships among the icons of the object diagram.30

Homomorphic means "the same in meaning yet shown with a different structure"

CMU/SEI-88-TR-30 41

with Standard_Engineering_Types;
package <Object>_Object_Manager is

package Set renames Standard_Engineering_Types;
type <Object> is private ;
type <Attribute_2> is 71;
type <Attribute_l> is 71;

function New_<Object> return <Object>;
I*»»•••••»•»«*»•»•»»**»»»•*••»•*»»*»«****•***»»»»**»*»•»*•»»»**»**

Description:
This function returns a pointer to a new <object> object
representation This pointer will be used to identify
the object for state update and state reporting purposes.

Parameter Description:
return <object> which is an access to a <object> object.

procedure Give_<State_l>_To (A_<Object> : in <Object>;
Given_<Input>_<Type_l> : in Set.<Type_l>;
Given_<Input>_<Type_2> : in Set.<Type_2>;
Given_<Input>_<Type_3> : in Set.<Type_3>);

_^***
Description:

Initiates a change in the specified <object> object's
state given the <input>_<type_l>, <input>_<type_2>,
and the <input>_<type_3>.

Parameter Description:
A_<object> identifies the <object> whose state is to be changed.
Given_<input>_<type_l> is the <input> <type_l>, in llunits
Given_<input>_<type_2> is the <input> <type_2>, in ??units
Given_<input>_<type_3> is the <input> airflow, in ??units

pragma Inline (Give_<State_l>_To);

private
type <Object>_Representation;
— incomplete type, defined in package body

type <Object> is access <Object>_Representation;
— pointer to an <object> representation

end <Object>_Object_Manafjer;

Figure 5-1: Object Manager Template Example

The templates contain the general features of the component, with place-holders for the spe-
cific features. Appendix B contains a complete object template. The template uses the nota-
tion <object> as a place-holder for the name of the object. The notation <attribute_x> is
used for expression of operational state variables and attributes. The object operations are
expressed in similar terms (See Figure 5-1).

The templates are not intended to contain all the necessary details for generating a complete
version of the code. They are intended as a starting point. The framework for each object
manager, system update package, connection package, and system aggregate is similar. The

42 CMU/SEI-88-TR-30

details are different. Package bodies and subprogram bodies are provided within the
templates. The implementor provides details within a template's framework. The resulting
components will have a similar look and structure. This will aid readability, understanding,
and maintenance.

5.2.1. Diagram Parsers
Several commercial tools have the capability of parsing diagrams and generating code
templates to varying levels of detail. The detail is limited by the diagram notation.

The object diagram, Figure 4-2, is typical of a diagram for which a parser could be written.
The parser could generate the templates discussed earlier. We view this as a natural exten-
sion of the paradigm toward a more automated solution.

5.3. Enhancements to Object Diagrams

The notation used on the object diagram, Figure 4-2, reflects the dependencies between ob-
jects and state information. It defines the connections necessary to construct the system.

Several extensions to the diagram notation can be envisaged. One would be to delineate the
processing order of the connections. The Engine Casing is the object through which the air
flows as the air passes through the engine. Each of the other objects interacts with the air as
it flows through the Engine Casing. Nothing on the diagram denotes the order of connec-
tion processing. There may, however, be a specific order necessary to insure a consistent
state of the Engine system.

Another extension would be to add pointers to algorithms. The algorithms, expressed in
pseudocode, could be inserted in package bodies by the diagram parser.

CMU/SEI-88-TR-30 43

44 CMU/SEI-88-TR-30

6. Open Issues

6.1. Distributed Processing

One of the design goals of the paradigm was to facilitate spreading the work load over multi-
ple processors. The description that follows encompasses our theories on what would be
required to distribute the processing over several processors. We have not implemented or
tested any of these ideas.

The paradigm begins with the notion of an executive. An executive controls the update of a
set of systems compiled together and thus running on a single processor. The paradigm
assumes that there will be more than one set of systems and that multiprocessing will be
involved.

Integrated_Drive_Energy :=
Generator_Obj ec t_M anager. Get_Energy_From

(A_Generator => Ac_Power_Aggregate.Integrated_Drive_Generators
(Engines_To_Idg_Map (An_Engine)));

Rotor2_Object_Manager.Give_Torque_To
(A_Rotor2 => Engine_System_Aggregate.Engines

(An_Engine).The_Rotor2,
GivenJTorque => Standard_Engineering_Types.Torque

(Integrated_Drive_Energy));

Figure 6-1: Executive Connection Procedure Example

Integrated_Drive_Energy :=
Flight_Exacutive_Buffer.Get_Energy_Prom

(A_Buffer_Location => Fught_Buffer.Idg(An_Engine);

Rotor2_Obj ect_Manager.Give_Torque_To
(A_Rotor2 => Engine_System_Aggregate .Engines

(An_Engine).The_Rotor2,
Given_Torque => Stendard_Engineering_Types. Torque

(Integrated_Drive_Energy));

Figure 6-2: Communicating with a Data Transfer Buffer

CMU/SEI-88-TR-30 45

The abstraction of higher-level objects, such as engines, into systems allows a set of objects to
be updated as an entity. This abstraction coupled with the paradigm's approach to proc-
essing connections facilitates multiprocessing. Placing a set of systems on a separate proces-
sor requires only creating an executive for the processor and making minor changes to the
executive-level connections to the system.31 None of the system-level code changes.32

Communication between executives is handled by an abstraction called a buffer. A buffer is
some means of sharing data among separately compiled software.33 The paradigm makes no
assumption about how the operating system transfers data or how executives on separate
processors are invoked. For example, assume that the Flight Executive has been split so
that some of its systems, e.g., the Electrical system and the Fuel system, are on a processor
separate from the Engine system. The executive that handles the Engine system needs to
communicate with a buffer to get the environmental effects from these other systems. Figure
6-1 shows how connections between objects are typically handled. Figure 6-2 shows how
communication between the executive's connecting procedure and a buffer can be imple-
mented. The fragments read the torque required by the Integrated Drive Generator ob-
ject manager in the Electrical system from the buffer. This is one of the changes required to
implement a system on distributed processors.

Another required change would be to load the buffer with the states of objects needed by
systems on the other processor. All outputs required by systems on other processors must be
written into the buffer. This step would take place after the update of the system, as defined
in Section 4.5.2.

One can imagine a development environment which automatically accommodates the distri-
bution of systems across processors. The notations for the object diagram could be extended
to indicate which systems were to be grouped on a processor. The "address" of the object
read by a connection procedure could be calculated at link time: the choices would be an
object or a buffer surrogate.

6.2. Tuning
The construction of a system using the paradigm results in a product which is easy to read,
understand, and maintain. The performance of the system, however, still must fit into the
time constraints demanded by the application. The implementation described in the para-
digm (and embodied in the templates) is intended to be a starting point for a usable system.

31A typical minor change is demonstrated in Figures 6-1 and 6-2.

32There are many approaches to the solution of this problem. We do not intend to compare or delineate all
possible solutions. One other solution would be to have the generation of connection dependencies handled by
compiler pragmas. The effects would be the same, however. Our goal was to minimize perturbations to the
connection procedures.

33In our observations of flight simulators, a buffer is a record data structure used in the communication between
processors.

46 CMU/SEI-88-TR-30

We fully expect that adjustment of some of the concepts may be necessary. For example, Ada
allows an implementor to inline certain procedures and functions. The overhead of a proce-
dure call is saved. For many of the object manager operations, which are only a few lines
long and tend to be called frequently during an update, Mining may provide a significant
time savings.

Another useful technique is that of combining effects. For example, providing multiple
parameters to a subprogram instead of making multiple, individual subprogram calls. The
implementation of the Engine system, described in Chapter 4, demonstrates this technique.
Figure 4-6 shows an example with three parameters in the subprogram call
Get_Discharge_Air_From.

A second method for combining effects is to group like objects together. For example, in a
simulator electrical system there are hundreds of circuit breakers. Each one has to be up-
dated with respect to the hardware linkage buffer on each cycle. Also, at each level several
breakers have to be updated through their connections to other systems. One solution is to
create an object manager that handles groups of identical objects. A circuit breaker collec-
tion manager would contain subprograms for dealing with groups of breakers at a time.
Thus, a single subprogram call operating on a group of objects replaces multiple calls each
operating on individual objects.

6.3. Reposition and Flight Freeze
Flight freeze and reposition are two of the operating modes of an aircraft simulator.

In the flight freeze mode the simulator software state is frozen, i.e., it stops changing with
time. Communication with the simulator hardware must be maintained. Freeze may be
initiated by the instructor at any time during a training exercise when communication with
students is necessary.

The reposition mode is initiated by the instructor at the IOS when a particular training
exercise is to be repeated. Tie communication between the simulator software and the
hardware is maintained, and new values for flight data are loaded into the software. After a
sufficient waiting period to allow the software to ramp to the new conditions, the simulator is
restarted.

The paradigm considers time to be an outside effect on an object. Thus, it might be possible
to implement flight freezes by controlling the time effects on objects. Similarly, a reposition
would be accomplished by using reposition connecting procedures. In reposition mode, the
executive level would connect systems to reposition buffers. A connecting procedure would
read from the buffer instead of the object it reads from during normal run mode.

We have not implemented or tested these ideas. However, we are convinced that the para-
digm does not complicate reposition and flight freeze.

CMU/SEI-88-TR-30 47

6.4. System Exports and System Imports

The paradigm makes the objects of a system visible to the executive and to other systems.34

We have begun to study the merits of hiding the objects behind system-level data called
expo/* nd import areas.

Currently, the paradigm calls for a connection to read the state of one object and write the
state of another object. If export and import areas are used, executive-level connections
would move data from the export areas of some systems to the import areas of others.

For example, the Engine system's import area would contain a typed variable for each state
of its objects affected by other systems. Before calling for an update of the Engine system,
the executive would process the connections to the Engine's import area. The Engine system
would have system-level connections from the import area to its objects. To perform an
update, the Engine system would gate those connections in conjunction with the connections
among the Engine objects. Upon completion of the update, the Engine system would gate
connections from its objects to its export area. Figure 6-3 shows how the Engine object
diagram would appear using export and import areas. Figure 6-4 shows how the software
architecture would appear.35

We have not completed analysis of this approach. The only apparent benefit is subtle. Re-
member that an object can update its state when given a new environmental effect value.
One usually assumes that moving data is a fast operation. However, if the executive writes
directly to an object, which updates its state, then the movement of data could be time con-
suming. The use of export and import areas assumes that all computations will occur during
the update of the system instead of before or after the update is called for by the executive.

The use of export and import areas does not hide information. The executive-level connec-
tions will terminate either at objects or at export and import areas. In either case the execu-
tive knows about the same number of reads and writes. The important thing is that even
without export and import areas, a system knows nothing about any other systems.

6.5. Our Executive's Control of Time
A system expects to be updated at regular intervals. It also expects to update itself with
respect to a consistent set of external effects. Suppose the Engine system was last updated
at t20. The executive is preparing to update the Engine at t25. The Fuel system has been
updated at t25, but the Electrical system was last updated at t20 and will not be updated
again until t30.

34However, states are changed and read only through connections. Thus, no system reads from or writes to other
systems.

35Compare Figures 6-3 and 6-4 with Figures 4-2 and 3-5, respectively.

48 CMU/SEI-88-TR-30

"S*

UJ B— e it co >.»•-• E

"B»

f—\

2»
co

CD .

<co

— E a. o . \\i x a. o . < ^ • «

•o « M ** • > •
•a £ § E 23 *
m> 1 1

4 t-

•
23 i «

In
la

t
P

ra
ss

u
am

pe
ra

A

ir
Fl

o c
a
00

*•

t-

•> g
3 3

•4— a
X

UJ •
S

£

o> f 8 5 » c rfi
c
M Hi 1JS
U * P 3
•

2 c
at •-*
c
Ul

o
DC

-5 f g-
I'll

ctS
U-Q

2
3

 W

3 5 a a <. i S-5
lid

•
•
2

?

a

« 1 1 rftf „ 1

iiij
.8

23 * erf a
3§l
o. g*

i.
O
o

-*
•• 3 £&* ~ s i tr

a
las

2
1I1*J as Is c

ill

iH ^

-«_

3
O
CD
X

UJ

.2>

Figure 6-J1: Alternative Engine Object Diagram

CMU/SEI-88-TR-30 49

Right_Executive

Right Executive Connections

c
i

r;:;::,"::;:i

Engine_System

A.
ElectricalSystem

Engine System lmports_and_Exports Engine_System_Connections

i
Fuel_System

_L D

1

Rotort OM Rotor2_OM Bumer_OM Bleed_Valve_OM DHfuser_OM Fan_Duct_OM Exhaust_OM Engine_Casing_OM

) ! C

laaana.'

OM » Object_Manager

Figure 6-4: Alternative Software Architecture

To present the Engine with a consistent picture of its world at t25, the executive must ex-
trapolate the state of the Electrical system. The executive must keep a history of snapshots,
in this case one from tlO and one from t20. We have not incorporated this in the paradigm,
but we see no problem in doing so.

6.6. Cyclicness
We have not studied the extent to which the executive must be cyclic. However, we see no
reason to force updates to be harmonic. An executive is nothing more than a dispatcher that
controls time and access to a central resource, the CPU. Algorithms similar to the rate
monotonic algorithms, becoming available for scheduling tasks, could be used to schedule the
updates of systems. Since the algorithms will allow tasks to run at discordant periods, the
executive would not have to be cyclic in the traditional sense.

50 CMU/SEI-88-TRr30

6.7. Load Balancing

with Flight_System_Najr">s;
with Flight_Executive_Connection_Manager;

with Engine_System;
with Electrical_System;

package body Flight_Executive is

procedure Update_Flight_Executive (Frame : in
Global_Types.Execution_Sequence) is

begin
for A_System in Flight_System__Names.Name_Of_A_Flight_System loop

if Its_Time_To_Do (Frame) (A. System) then
case A_System is

when Flight_System_Naio.es. Electrical =>
Flight_Executive_Connection_Manager.

Proce8S_External_Connections_To_Electrical_Sy8tem;
Electrical_System.Upda:e_Electrical_System;

when Flight_System_Naiaes.Engines_First_Part..
Fhght J5ystem_Names.Engines_Fourth_Part =>

if A_System = Flight_S'rstem_Names.
Engine8_First_Part then

Flight_Executive_Connection_Manager.
Process_Extemal_Connections_To_Engiiie_System;

end if;
Engine_System.Update_Engine_System(A_System);

end case ;
end if;

end loop;

end Update_Flight_Executive;
end Flight__Executive;

Figure 6-5: Executive Example

The paradigm, as described, requires an update to be atomic. This means that when the
executive regains the CPU after calling a system update, the executive expects all the objects
of the system to be consistent with respect to the external world presented to the system at
the start of the update. However, it may not be possible to schedule the update of an entire
system in a single time slice.

The paradigm can be modified to accommodate spreading an update across frames of a cyclic
executive. For example, it may be necessary to distribute the update of the Engine system
equally to four frames. In this i:ase, the executive would process all connections to the En-
gine system before calling for the update of the Engine system. The executive would then
call the Engine update procedure four times. The update procedure would include a
parameter indicating the cardinality of the update: first, second, third, or fourth. The system
would know what had to be done at each call. Figures 6-5 and 6-6 show how the executive-
level and system-level routines would be modified to accommodate this concept.36

6
Compare Figures 6-5 and 6-6 to Figures 4-10 and 4-6, respectively.

CMU/SEI-88-TR-30 51

with Flight_System_Names;
with Engine_System_Aggregate;

with Diffuser_Object_Manager;
with Engine_Casing_Object_Manager;

package body Engine_System is

procedure Update_Engine_System (
A_System: Flight_System_Names.Name_Of_A_Flight_System)is

Diffiiser_Discharge_Pressure : SetPressure;
Difluser_Discharge_Temperature : Set.Tomperature;
Diffiiser_Discharge_Air_Flow : Set.Air_Flow;

begin
case A_System is

when Flight_System_Names.Engines_First_Part =>

— Model the connection characterized by the dependence of the
— Engine Casing on the Diffuser for PneumaticJEnergy.

Difluser_Obj ect_Manager.Get_Di8charge_Air_From
(A_Diffiiser =>

Engine_System_Aggregate. Engines
(Given_Engine_Name).The_Diffuser,

Returning_Discharge_Pressure =>
DiifiiBer_Discharge_Preasure,

Returning_Discharge_Temperature =>
Diffuser_Di8charge_Temperature,

Retuming_Discharge_Air_Flow =>
Diffioser_Discharge_Air_Flow);

Engine_Casing_Objeet_Manager.Give_Air_Flow_To
(A_Engine_Caaing =>

Engine_System_Aggregate.Engines
(Given_Engine_Name).The_Engine_Ca8ing>

Given_Air_Flow => DiSuser_Discharge_Air_Flow);
Proceaa_Pirst_Connection_Set;

when Flight_Sy8tem_Name8.Engines_Second_Part => null;

« do some other Engine connections here

when Flight_Sy8tem_Name8.Enginea_Third_Part => null;

-- do still more Engine connections here

when FUght_System_Names.Engines_Fourth_Part => null;

— do the rest of the Engine connections here

end case ;
end Update_Engine_System;

end Engine_System;

Figure 6-6: System Example

Note that the executive would not know how the Engine system distributed its work. The

52 CMU/SEI-88-TR-30

executive assumes that between the first and fourth call of the Engine update the state of
the Engine system is undefined. This is not a hardship; the executive merely broadcasts
Engine state, i.e., gates the connections from the Engine system, to other systems before the
update begins.

6.8. Generics

Each object manager in the paradigm provides an allocator, the New_<object> operation, to
create instances of an object. For example, there are four instances of the Burner object,
one for each engine.

Reviewers have suggested generics as an alternative approach for creating multiple in-
stances of an object. Each object manager could be a generic package which would be instan-
tiated once for each object needed. The generic parameters could be values for attributes and
the operating conditions of the object. Figure 6-7 shows a generic Burner object manager.37

In this case, there are no gener c parameters.

There are two immediate advantages to such an approach. First, the aggregate data struc-
ture would not be needed. The instances would be named through instantiation. Figure 6-8
shows how the generic object managers would be instantiated for the Engine system.38

Second, memory for the objects! would be allocated statically. The current implementation
causes memory to be allocated on a heap, even though the number of instances of each object
is constant.

The use of generics to create systems is more complicated. Executive-level connections to
systems do not flow between the same instances of objects. We are continuing to investigate
the use of generics at this level.

6.9. System-Level Objects
In the paradigm, the Engine system is the sum of its parts. There is no system-level, Engine
system object per se. The Engine system has no state other than the states of the objects
which make up the Engine system.

Some systems seem to require a system-level object. For example, the case of an IFF39 box
might distribute power to the components of the IFF system inside the case. Under the
paradigm, software objects woidd be created to model the selected components. The case
itself also might be modeled with a software object. The software object corresponding to the

"Compare with the Burner object manager in Figure 4-3.

Compare with the Engine Aggregate package shown in Figure 4-8.

39Identify Friend or Foe

CMU/SEI-88-TR-30 53

with Standard_Engineering_Types;

generic

package Bumer_Object_Manager is

package Set renames Standard_Engineering_Types;

type Burner is private ;
— an Burner is an abstraction of a Burner within an Engine.

type Spark is (None, Low, High);
— burner needs only to know relative spark size

type Puel_Flow is (None, Flowing);
— the burner needs to know only if it has fuel available

function New_Bumer return Burner,

procedure Give_Inlet_Air_To
(A_Bumer : in Burner;
Given_Inlet_Pressure : in Set.Pressure;
Given_Inlet_Temperature : in Set.Temperature;
Given_Inlet_Air_Flow : in Set.Air_Flow);

procedure Get_Discharge_Air_Prom
(A_Burner: in Burner,
Returning_Discharge_Pressure : out Set.Pressure;
Returning_Discharge_Temperature : out Set.Temperature;
Retuming_Discharge_Air_Flow : out Set.Air_Flow);

procedure Give_Fuel_Flow_To
(A_Bumer : in Burner;
Given_Fuel_Flow: in Puel_Flow);

procedure Give_Spark_To (A_Bumer : in Burner,
Given_Spark : in Spark);

pragma Inline (Give_Inlet_Air_To,
Get_Discharge_Air_From,
Give_Puel_Flow_To,
Give_Spark_To)

private
type Burner_Representation;
— incomplete type, defined in package body

type Burner is access Burner_Representation;
— pointer to an Burner representation

end Bumer_Object_Manager,

Figure 6-7: Generic Object Manager Example

case would be an object at the same level as the objects inside the case. We would not feel
compelled to nest component software inside the case software.

We will continue to investigate the need for objects which aggregate system-level informa-
tion.

54 CMU/SEI-88-TR-30

with Bumer_Object_Manager;
package Engine_l_Burner ia new Burner_Object_Manager;
with Bumer_Object_Manager;
package Engine_2_Burner is new Bumer_Object_Manager;

with Bleed_Valve_Object_Manager,
package Engine_l_Bleed_Valve is new Bleed_Valve_Object_Manager;
with Bleed_Valve_Object_Manager;
package Engine_2_Bleed_Valve is new Bleed_Valve_Object_Manager;

with Diffu8er_Object_Manager,
package Engine_l_Diffuser is new Diffuser_Object_Manager;
with DifFuser_Object_Manager;
package Engine_2_Diffuser is new Diffuser_Object_Manager;

with Engine_Casing_Object_Manager;
package Engine_l_Engine_Casing in new Engine_Casing_Object_Manager;
with Engine_Casing_Object_Manage:r,
package Engine_2_Engme_Casing it. new EngLne_Casing_Object_Manager;

with Exhaust_Object_Manager;
package Engine_l_Exhaust is new Exhaust_Object_Manager;
with Exhaust_Object_Manager,
package Engine_2_Exhaust is new Ezhatiat_Object_Manager;

with Fan_Duct_Object_Manager;
package Engine_l_Fan_Duct is new Fan_Duct_Object_Manager;
with Fan_Duct_Object_Manager;
package Engine_2_Fan_Duct is new Fan_Duct_Object_Manager,

with Rotorl_Object_Manager;
package Engine_l_Rotorl is new Rotor l_Object_Manager;
with Rotorl_Object_Manager,
package Engine_2_Rotorl is new Rotorl_Object_Manager;

with Rotor2_Object_Manager,
package Engine_l_Rotor2 is new Rotor2_Object_Manager;
with Rotor2_Object_Manager,
package Engine_2_Rotor2 is new Rotor2_Object_Manager;

Figure 6-8: Generic Object Instantiation Example

CMU/SEI-88-TR-30 55

56 CMU/SEI-88-TR-30

7. Electrical System

An Electrical system in an aircraft provides electrical power to devices in other systems:
devices such as fuel pumps and valves in the Fuel system, hydraulic pumps in the Hydraulic
system, and air conditioning in the Environmental Control system. The systems are able to
function only if power is available. They, in turn, put their load, i.e., the amount of current
they require, back onto the Electrical system. The load is transferred back to the generators,
along the Electrical system buses, where a determination of possible overloading takes place.

A subset of the Electrical system has been completed and tested. The code with accompa-
nying documentation is available on request from the authors. The code illustrates some
concepts not illustrated by the Engine system example.

7.1. Additional Concepts
The Engine system, Appendix C, is complete through the package specifications. The subset
of the Electrical system is fully functional and has been thoroughly tested.

Several performance issues arose during the implementation. There are several hundred
Circuit Breakers in a typical Electrical system. Each one has to be updated with respect to
the hardware linkage buffer en each cycle. Also, at each level of the software several
breakers have to updated through their connections to other systems. The subprogram calls
in each object manager were inllned in order to reduce the overhead during update.

Grouping of like effects is also performed. Voltage and load conversion factor (lef) are up-
dated together. In addition, voli;age, lef, and current are grouped in a data structure which is
used during all read operations from objects. Both steps result in fewer subprogram calls.

The concept of updating a system as a unit means, to us, that all aspects of the system
update must be complete in the execution frame. The Electrical system subset includes a
tie-bar, an electrical bus which connects several other buses. In order to insure that the
update is complete within the frame, the tie-bar is processed repeatedly in the frame. The
number of times necessary depends on the number of other connections to the tie-bar.

Other issues that arose during the complete implementation included decisions about writ-

CMU/SEI-88-TR-30 57

ing effects to objects and reading outputs from objects. For some objects, like Circuit
Breakers, the external effects are written and outputs are calculated during a read opera-
tion. For other objects, states are calculated when effects change.

The Electrical system object diagram.: i >ok like circuit diagrams. Given a library of objects
and a diagram parser, one could fully automate the production of code from a circuit
diagram.

58 CMU/SEI-88-TR-30

Appendix A: Software Architecture Notation

The notation used to describe the software architecture is a modified form of the notation
expounded by Grady Booch in liis book on software engineering with Ada [1] and his book on
reusable software components with Ada [2]. The notation used is true to the intent of
Booch's notation. The variations (i.e., extensions) are:

• use of reduced package, subprogram and task icons inside larger icons rather
than the object (or blob) icon

• use of object dependency arrows more subtly, to distinguish different types of
dependencies

• internal details of any reusable subsystem, package, subprogram or task are not
shown

One final note about the notation: The figures need not show all the fine-grained detail of a
package or subprogram. When the code of a package (or subprogram) is compared to a figure
associated with that package (or subprogram) there may be nested procedures or packages
not shown on a particular picture, or it may depend on a package not explicitly shown in the
figure. The guidelines for these cases are:

• utility packages or services are not shown (this includes things like text_io, reus-
able data structure packages, math libraries, etc.)

• the figures are meant to show the significant details at a particular level, not all
the details

• the definition of "a significant detail" is solely at the discretion of the designer

Based on these ideas, Figures A-l thru A-4 explain the meaning of each of the icons available
using this notation.

CMU/SEI-88-TR-30 59

Object Subsystem Object
^e^endency

Figure A-l: Object, Subsystem and Dependency Notation

The object (or blob) icon, shown above in Figure A-l (a), represents an identifiable segment of
a system, about which we have no implementation information. We make no use of this icon.

The subsystem icon, shown above in Figure A-l (b), represents a major system component
that has a clearly definable interface, yet, which is not representable as a single Ada pack-
age. We currently make no use of this icon, although we could.

The object dependency symbol, shown above in Figure A-l (c), indicates that the object at the
origin of the arrow is dependent on the object at the head of the arrow. The origin of the
arrow indicates where the dependency occurs. If the origin is in the white area of an icon
(shown in subsequent figures), it indicates a specification dependency. If the origin is in the
shaded area, it indicates a body dependency.

60 CMU/SEI-88-TR-30

Package
Specification &
Body

Package
Specification

1
()

(J

Package
Rody

Package with
separate subpackages

1 t

I 1

i

Package with
separate subprograms

Generic
Package

v

•*• •*. ^ V •» « '
* .

;

e

Figure A-2: Package Notation

The package specification and body icon, shown above in Figure A-2 (a), represents an Ada
package specification, the white area, with an associated package body, the shaded area.
This icon can be broken apart to show a package specification, Figure A-2 (b), or a package
body, Figure A-2 (c).

Figures A-2 (d) and (e) are variations on the package icon which show greater detail. Figure
A-2 (d) is used to represent packages which have nested subpackages within the body; if the
small package icon were placed within the specification, it would indicate visible nested
packages. Similarly, Figure A-2 (e) illustrates the notation used for separate subprograms
within the body of a package.

Finally, Figure A-2 (f) illustrates the icon used for generic packages. Everything discussed
above in regard to regular pacltages can also be applied to generic packages.

CMU/SEI-88-TR-30 61

Subprogram Subprogram
Spec ification & Body
Body

t •-•—••

Subprogram with
nested subprograms

Subprogram with
nested subpackages

Generic
Subprogram

t r-

>
>

' *

'*
':;>
'::>

'fi^

e

Figure A-3: Subprogram Notation

Much of what was discussed previously in regard to packages also applies to subprograms.
The subprogram specification and body icon, shown above in Figure A-3 (a), represents an
Ada subprogram specification, the white area, with an associated subprogram body, the
shaded area. This icon can be broken apart to show a subprogram body, Figure A-3 (b).

Figures A-3 (c) and (d) are variations on the subprogram icon which show greater detail.
Figure A-3 (c) is used to represent subprograms which have nested subprograms within the
body. Similarly, Figure A-3 (d) illustrates the notation used for separate subpackages within
the body of a subprogram.

Finally, Figure A-3 (f) illustrates the icon used for generic subprograms. Everything dis-
cussed above in regard to regular packages can also be applied to generic subprograms.

62 CMU/SEI-88-TR-30

Task
Specification &
Body

L

Task
Specification

tmmmm L

Task
Body

a

Figure A-4: Task Notation

Again, much of what was discussed previously in regard to packages and subprograms, ap-
plies to tasks. The task specification and body icon, shown above in Figure A-4 (a),
represents an Ada task specification, the white area, with an associated task body, the
shaded area. This icon can be broken apart to show a task specification, Figure A-2 (b), or a
task body, Figure A-4 (c). Although they are not shown, nested package and subprograms
are represented in exactly the same manner as shown in Figure A-2 for packages and sub-
programs.

CMU/SEI-88-TR-30 63

64 CMU/SEI-88-TR-30

Appendix B: Object Manager Template

— The following are instructions regarding the use of this template.
— We realize that the template does not encompass every procedure
— which might be needed, however with alterations to the existing
— procedures one can easily affect the neccessary changes.

— Do global substitutes on the following:
<object> gets the name of the object being created

— ie. <object> => Burner

<input> gets the general prefix for indicating that a
variable is input

— ie. <input> => Inlet

— <output> gets the general prefix for indicating that a
— variable is output
— ie. <x>utput> => Discharge

— <state_n> is the state of the object you wish to modify
— Note : n can take on values 1 to 3 for statejn.
— If more states are needed the user should
— cut the existing ones to create more.
~ ie. <state_l> =>Air

— <type_n> is the type of the variable within a state which
— which you wish to modify.
— Note : n can take on values 1 to 9 with 1-3 corresponding
— to state .1 , ... The user should remove unwanted

type.
— ie. <type_l> => Pressure

— <attribute_n> are the attributes of an object you wish to modify.
Note : n can take on values 1 to 3

ie. <attribute_l> => spark

— <type_n_units> and <attribute_n_units> are the units corresponding to
to the types and attributes used within the object manager.

— ie. <type_l_units> => pounds per square inch
— ie. <attribute_l_units> => joules

— do a search now for all instances of ?? and fill in the
neccessary information

— Finally the user should remove all unwanted code and comments

„ I ***

— I Module Name:
— I <object>_Object_Manager
-I

CMU/SEI-88-TR-30 65

Module Type:
Package Specification

Module Purpose:
This package manages objects which simulate the
Engine <object> for the C-141 simulator.
This management entails creation of <object> object's
update, maintenance of its state, and state
reporting capabilities.

Module Description:
The <object> object manager provides a means to create
an <object> object via the New_<object> operation and returns
an identification for the <object>, which is to be used when
updating I accessing the <object> object's state as described below.

The <x>bject> object manager provides a means to update the
state of the object via the:

1) Give_<input>_<state_l>_To
2) Give_<input>_<state_2>_To
3) Give_<input>_<state_3>_To

4) Give_<attribute_l>_To
5) Give_<attribute_2>_To
6) Give_<attribute_3>_To

operations, requiring the following external state information:
1) <input>_<type_l>

<input>_<type_2>
<input>_<type_3>

2) <input>_<type_4>
<input>_<type_5>

<input>_<type_6>
3) <input>_<type_7>

<input>_<type_8>
<input>_<type_9>

4) <attribute_l>
5) <attribute_2>
6) <attribute_3>

<type_l_units>
<type_2_units>
<typeJ3_units>
<type_4_units>

<type_5_units>
<type_6_units>
<type_7_units>

<type_8_units>
<type_9_units>

<attribute_l_units>
<attribute_2_units>
<attribute_3_units>

The <object> object manager provides a means of obtaining
state information via the:

1) Get_<output>_<state_l>_From
2) Get_<output>_<state_2>_From
3) Get^<output>_<state_3>_From

operations, yielding the following internal state information:
1) <output>_<type_l> <type_l_units>

<type_2_units>
<type_3_units>
<type_4_units>

<typej>_units>
<type_6_units>
<type_7_units>

<type_8_units>
<type_9_units>

<output>_<type_2>
<output>_<type_3>

2) <output>_<type_4>
<output>_<type_5>
<output>_<type_6>

3) <output>_<type_7>
<output>_<type_8>
<output>_<type_9>

References:
none

Design Documents:
none

User's Manual:
none

Testing and Validation:
none

66 CMU/SEI-88-TR-30

Notes:
none

Modification History:
24Aug87 cpp Creation

13Jul88 kl Modified

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied

Disclaimer:
"This work was sponsored by the Department of Defense."

»***•**»»***•****•*******»*»»***»»»******•»»»*»»**»*»*»***••»*»•**»***»

with Standard_Engineering_Types;

package <Object>_Object_Manager is

package Set renames Standard_Engineenng_Types;

type <Object> is private ;
— an <object> is an abstraction of a <object> within an Engine.

type <Attribute_l> is ??;
- the <object> needs to know ??

type <Attribute_2> la ??;
- the <object> needs to know ??

type <Attribute_3> is ??;
— the <object> needs to know ??

function New_<Object> return <Object>;
I***

Description:
This function returns a pointer to a new <object> object
representation. This pointer will be used to identify
the object for state update and state reporting purposes.

Parameter Description:
return <object> which is an access to a <object> object.

»»»•••••»••*****•»*••«•******»•*»»*•***•••»***»•»•*****»*»•****

procedure Give_<Input>_<State_l>_To (A_<Object> : in <0bject>;
Given_<Input>_<Type_l> : in Set.<Type_l>;
Given_<Input>_<Type_2> : in Set.<Type_2>;
Given_<Input>_<Type_3> : in Set.<Type_3>);

_ | »****»•***•*•**••••**»•»«*«*****»*»*»**•**•»*•*•*»*»»*»»****»**»•

Description:
Initiates a change in the specified <object> object's
state given the <input>_<type_l>, <input>_<type_2>,
and the <input>_<type_3>.

Parameter Description:
A_<object> identifies the <object> whose state is to be changed.
Given_<input>_<type_l> is the <input> <type_l>, in <type_l_units>
Given_<input>_<typeJ2> is the <input> <type_2>, in <type_2_units>
Given_<input>_<type_3> is the <input> <type_3>, in <type_3_units>

••a**

CMU/SEI-88-TR-30 67

procedure Give_<Input>_<State_2>_To (A_<Object> : in <Object>;
Given_<Input>_<Type_4> : in Set.<Type_4>;
Given_<Input>_<Type_5> : in Set.<Type_5>;
Given_<Input>_<Type_6> : in Set.<Type_6>);

„ |***

Description:
Initiates a change in the specified <object> object's
state given the <input>_<type_4>, <input>_<type_5>,
and the <input>_<type_6>.

Parameter Description:
A_<object> identifies the <object> whose state is to be changed.
Given_<input>_<type_4> is the <input> <type_4>, in <type_4_units>
Given_<input>_<type_5> is the <input> <type_5>, in <type_S_units>
Given_<input>_<type_6> is the <input> <type_6>, in <type_6_units>

procedure Give_<Input>_<State_3>_To (A_<Object> : in <Object>;
Given_<Input>_<Type_7> : in Set.<Type_7>;
Given_<Input>_<Type_8> : in Set.<Type_8>;
Given_<Input>_<Type_9> : in Set.<Type_9>);

I ***

Description:
Initiates a change in the specified <object> object's
state given the <input>_<type_7>, <input>_<type_8>,
and the <input>_<type_9>.

Parameter Description:
A_<object> identifies the <object> whose state is to be changed.
Given_<input>_<type_7> is the <input> <type_7>, in <type_7_units>
Given_<input>_<type_8> is the <input> <type_S>, in <type_8_units>
Given_<input>_<type_9> is the <input> <type_9>, in <type_9_units>

procedure Get_<Output>_<State_l>_From
(,A_<Object> : in <Object>;
Returning_<Output>_<Type_l> : out Set.<Type_l>;
Retuming_<Output>_<Type_2> : out Set.<Type_2>;
Retuming_<Output>_<Type_3> : out Set.<Type_3>);

_|»**»****»»***»**»»**»*»************•*»**»»*********»***********.»

Description:
Initiates a report of the specified <object> object's
state returning the <output>_<type_l>,
<output>_<type_2>, and the <output>_<type_3>.

Parameter Description:
A_<object> identifies the <object> whose state is needed.
Returning_<output>_<type_l> is the <output>_<type_l>portion

of<object> object's state, in <type_l_units>
Returning_<output>_ctype_2> is the <output>_<type_2> portion

of <object> object's state, in <type_2_units>
Returning_<output>_<type_3> is the <output>_<typeJ}> portion

of <object> object's state, in <type_3_units>

procedure Get_<Output>_<State_2>_From
(A_<Object> : in <Object>;
Retuming_<Output>_<Type_4> : out Set.<Type_4>;
Retuming_<Output>_<Type_5> : out Set.<Type_5>;
Retuming_<Output>_<Type_6> : out Set.<Type_6>);

_|**************»**»*»•»**••*•***•»»*****»•***»•»*»*»*»»»»»******•«

Description:
Initiates a report of the specified <object> object's
state returning the <output>_<type_4>,
<output>_<type_5>, and the <output>_<type_6>.

68 CMU/SEI-88-TR-30

Parameter Description:
A_<object> identifies the <object> whose state is needed.
Returning_<output>_<type_4> is the <output>_<type_4> portion

of <object> object's state, in <iype_4_units>
Returning_<output>_<type_5> is the <output>_<type_5> portion

of<object> object's state, in <type_5_units>
Returning_<output>_<type_6> is the <output>_<type_6> portion

of <object> object's state, in <type_6_units>

procedure Get_<Output>_<State_3>_From
(A_<Object> : in <Object>;
Retuming_<Output>_<Type_7> : out Set.<Type_7>;
Retuming_<Output>_<Type_8> : out Set.<Type_8>;
Retuming_<Output>_<Type_9> : out Set.<Type_9>);

Description:
Initiates a report of the specified <object> object's
state returning the <output>_<type_7>,
<output>_<type_8>, and the <output>_<type_9>.

Parameter Description:
A_<object> identifies the <object> whose state is needed.
Returning_<output>_<type_7> is the <output>_<type_7> portion

of <object> object's state, in <type_7_units>
Returning_<output>_<type_8> is the <output>_<type_8> portion

of <object> object's state, in <type_8_units>
Returning_<output>_<type_9> is the <output>_<type_9> portion

of <object> object's state, in <type_9_units>

procedure Give_<Attribute_l>_To (A_<Object> : in <Object>;
Given_<Attxibute_l> : in <Attribute_l>);

_|»****************************»****•**»»**»•***»»***»»*»**»»***»»»

Description:
Initiates a change in the specified <object> object's
state given the <attribute_l>.

Parameter Description:
A_<object> identifies the <object> whose state is to be changed.
Given_<attribute_l> is the <attribute_l>, in <attribute_l_units>

procedure Givo_<Attribute_2>_To (
A_<Object> : in <Object>; Given_<Attribute_2> : in <Attribute_2>);

I***

Description:
Initiates a change in the specified <object> object's
state given the <attribute_2>.

Parameter Description:
A_<object> identifies the <object> whose state is to be changed.
Given_<attribute_2> is the <attribute_2>, in <attribute_2_units>

procedure Give_<Attribute_3>_To (A_<Object> : in <Object>;
Given_<Attribute_3> : in <Attribute_3>);

_|***
Description:

Initiates a change in the specified <object> object's
state given the <attribute_3>.

Parameter Description:
A_<object> identifies the <object> whose state is to be changed.

CMU/SEI-88-TR-30 69

I Given_<attribute_3> is the <attribute_3>, in <attribute_3_units>
1*****************»***********4Mk*********»**********«*************

pragma Inline (Give_<Input>_<State_l>_To,
Get_<Output>_<State_l>_From,

Give_<Input>_<State_2>_To,
Get_<Output>_<State_2>_From,

Give_<Input>_<State_3>_To,
Get_<Output>_<State_3>_From,

Give_<Attribute_l>_To,
Give_<Attribute_2>_To,

Give_<Attribute_3>_To);
private

type <Object>_Representation;
-- incomplete type, defined in package body

type <Object> is access <Object>_Representation;
— pointer to an <object> representation

end <Object>_Object_Manager;

pragma Page;

70 CMU/SEI-88-TR-30

Module Name:

<object> Object Manager

Module Type:
Package Body

Module Description:
The Engine <object> object manager provides a means to create
an <object> object via the New_<object> entry and returns
an identification for the <object>, which is to be used when
updating/accessing the <object> objects state as described below.

The Engine <object> object manager provides a means to update the
state of the object via the:

1) Give_<input>_<state_l>_To
2) Give_<input>_<state_2>_To
3) Give_<input>_<state_3>_To

4) Give_<attribute_l>_To
5) Give_<attribute_2>_To
6) Give_<attribute_3>_To

entries, requiring the following external state information:
1) <input>_<type_l> <type_l_units>

<input>_<type_2> <type_2_units>
<input>_<type_3> <type_3_units>

2) <input>_<type_4> <type_4_units>
<input>_<type_5> <type_S_units>

<input>_<type_6> <type_6_units>
3) <input>_<type_7> <type_7_units>

<input>_<type_8> <type_8_units>
<input>_<type_9> <type_9_units>

4) <attribute_l> <attribute_l_units>
5) <attribute_2> <attribute_2_units>
6) <attribute_3> <attribute_3junits>

The Engine <object> object manager provides a means of obtaining
state information via the:

1) Get_<output>_<state_l>_From
2) Get_<joutput>_<state_2>_From
3) Get_<output>_<state_3>_From

entries, yielding the following internal state information:
1) <output>_<type_l> <type_l_units>

<output>_<type_2> <type_2_units>
<output>_<type_3> <type_3junits>

2) <output>_<type_4> <type_4_units>
<output>_<type_5> <type_5_units>
<output>_<type_6> <type_6_units>

3) <output>_<type_7> <type_7_units>
<output>_<type_8> <type_8_units>
<output>_<type_9> <type_9_units>

References:
Design Documents:

Testing and Validation:
none

Notes:
none

Modification History:
24Aug87 cpp Creation
13Jul88 kl Modified

CMU/SEI-88-TR-30 71

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied.

Disclaimer.
"This work was sponsored by the Department of Defense."

package body <Object>_Object_Manager is

type <Object>_Representation is
record

<Input>_<Type_l> : Set.<Type_l> := 77;
<Input>_<Type_2> : Set.<Type_2> := 7?
<Input>_<Type_3> : Set<Type_3> := 77;
<Input>_<Type_4> : Set.<Type_4> := T!
<Input>_<Type_5> : Set.<Iype_5> := 7!
<Input>_<Type_6> : Set.<Type_6> := 71
<Input>_<Type_7> : Set.<Type_7> := 7!
<Input>_<Type_8> : Set.<Type_8> := 7!
<Input>_<Typa_9> : Set.<Type_9> := 77;
The_<Attribute_l> : <Attribute_l> := 77
The_<Attribute_2> : <Attribute_2> := 77
The_<Attribute_3> : <Attribute_3> := 77;
<Output>_<Type_l> : Set.<Type_l> := 7?
<0utput>_<1ype_2> : Set.<Type_2> := 77
<Output>_<TVpe_3> : Set.<Type_3> := 77:
<Output>_<Type_4> : Set<Type_4> := 77;
<0utput>_<Type_5> : Set<Type_5> := 7?
<Out5>ut>_<Type_6> : Set.<Type_6> := 77
<Ou1^ut>_<Type_7> : Set.<Type_7> := 77;
<Output>_<Type_8> : Set.<Type_8> := 7?
<0ut5ut>_<Type_9> : Set.<Type_9> := 77:

end record ;

function New_<Object> return <Object> ia

Description:
This function returns a pointer to a new <object> object
representation. This pointer will be used to identify
the object for state update and state reporting purposes.

Parameter Description:
return <object> which is an access to a <object> object.

Notes:
none

•••it***

begin

— function body goes here

RETURN null;
end New_<Object>;

procedure Give_<Input>_<State_l>_To (A_<Object> : in <Object>;
Given_<Input>_<Type_l> : in Set.<Type_l>;
Given_<Input>_<Type_2> : in Set.<Type_2>;
Given_<Input>_<Type_3> : in Set.<Type_3>) is

72 CMU/SEI-88-TR-30

Description:
Initiates a change in the specified <object> object's
state given the <input>_<type_l>, <input>_<type_2>,
and the <input>_<type_3>.

Parameter Description:
A_<object> identifies the <object> whose state is to be changed.
Given_<input>_<type_l> is the <input> <type_l>, in <type_l_units>
Given_<input>_<type_2> is the <input> <type_2>, in <type_2_units>
Given_<input>_<type_3> is the <input> <type_3>, in <iype_3_units>

Notes:
none

»••••*»*»**•*•»»*»«*»»*»•»••»*****•»****»**»*•«***************»*•

begin
null;

— procedure body goes here

end Give_<Input>_<State_l>_To;

procedure Giva_<Input>_<State_2>_To (A_<Object> : in <Object>;
Given_<Input>_<Type_4> : in Sat.<Type_4>;
Given_<Input>_<Type_5> : in Set.<Type_5>;
Given_<Input>_<Type_6> : in Set.<Type_6>) is

Description:

Initiates a change in the specified <object> object's
state given the <input>_<type_4>, <input>_<type_S>,
and the <input>_<type_S>.

Parameter Description:
A_<object> identifies the <object> whose state is to be changed.
Given_<input>_<type_4> is the <input> <type_4>, in <type_4_units>
Given_<input>_<type_5> is the <input> <type_5>, in <type_5_units>
Given_<input>_<type_6> is the <input> <type_6>, in <type_6_units>

Notes:
none

begin
null;

— procedure body goes here

end Give_<Input>_<State_2>_To;

procedure Give_<Input>_<State_3>_To (A_<Object> : in <Object>;
Given_<Input>_<Type_7> : in Set.<Type_7>;
Given_dnput>_<Type_8> : in Set.<Type_8>;
Given_<Input>_<Type_9> : in Set.<Type_9>) is

.. |***
Description:

Initiates a change in the specified <object> object's
state given the <input>_<type_7>, <input>_<type_8>,
and the <input>_<type_9>.

Parameter Description:
A_<object> identifies the <object> whose state is to be changed.
Given_<input>_<type_7> is the <input> <type_7>, in <type_7_units>

CMU/SEI-88-TR-30 73

Given_<input>_<type_8> is the <input> <type_8>, in <type_8_units>
Given_<input>_<type_9> is the <input> <type_9>, in <type_9_units>

Notes:
none

. , *****************

begin
null;

— procedure body goes here

end Give_<Input>_<State_3>_To;

procedure Get_<Output>_<State_l>_From
(A_<Object> : in <Object>;
Retuming_<Output>_<Type_l> : out Set.<Type_l>;
Retuming_<0utput>_<Type_2> : out Set.<Type_2>;
Returning_<0utput>_<Type_3> : out Set.<Type_3>) is

I ***

Description:
Initiates a report of the specified <object> object's
state returning the <output>_<type_l>,
<output>_<type_2>, and the <output>_<type_3>.

Parameter Description:
A_<object> identifies the <object> whose state is needed.
Returning_<output>_<type_l> is the <output>_<type_l>portion

of<object> object's state, in <type_l_units>
Returning_<output>_<type_2> is the <output>_<type_2> portion

of <object> object's state, in <type_2_units>
Returning_<output>_<type_3> is the <output>_<type_3> portion

of <object> object's state, in <type_3_units>

Notes:
none

begin
null;

~ procedure body goes here

Returning_<Output>_<Type_l> := 77;
Retuming_<Output>_<Type_2> := 77;
Returning_<Output>_<Type_3> := 77;

end Get_<Output>_<State_l>_From;

procedure Get_<Output>_<State_2>_From
(A_<Object> : in <Object>;
Returning_<Output>_<Type_4> : out Set.<Type_4>;
Returning_<Output>_<Type_5> : out Set.<Type_5>;
Retuming_<Output>_<Type_6> : out Set.<Type_6>)i«

„ |***

Description:
Initiates a report of the specified <object> object's
state returning the <output>_<type_4>,
<output>_<type_5>, and the <output>_<type_6>.

Parameter Description:
A_<object> identifies the <object> whose state is needed.
Returning_<output>_<type_4> is the <output>_<type_4> portion

74 CMU/SEI-88-TR-30

of <object> object's state, in <type_4_units>
Returning_<output>_<type_5> is the <output>_<type_5> portion

of <object> object's state, in <type_5_units>
Returning_<output>_<type_6> is the <output>_<type_6> portion

of <object> object's state, in <type_6_units>

Notes:
none

begin
null;

- procedure body goes here

Retuming_<Output>_<Type_4>
Retuming_<Output>_< Type_5 >
Retuming_<Output>_<Type_6>

= ??
«7?
-77

end Get_<Output>_<State_2>_From;

procedure Get_<Output>_<State_3>_Prom
(A_<Object> : in <Object>;
Returning_<Output>_<Type_7> : out Set.<Type_7>;
Retuming_<Output>_<Type_8> : out Set.<Type_8>;
Returning_<Output>_<Type_9> : out Set.<Type_9>) is

Description:
Initiates a report of the specified <object> object's
state returning the <output>_<type_7>,
<output>_<type_8>, and the <output>_<type_9>.

Parameter Description:
A_<object> identifies the <object> whose state is needed.
Returning_<output>_<type_7> is the <output>_<type_7> portion

of <object> object's state, in <type_7_units>
Returning_<output>_<type_8> is the <output>_<type_8> portion

of <object> object's state, in <type_8_units>
Returning_<output>_<type_9> is the <output>_<type_9> portion

of <object> object's state, in <type_9_units>

Notes:
none

begin
null;

- procedure body goes here

Retoirning_<Output>_<Type_7> := 77
Retuming_<Output>_<Type_8> := 7?
Returning_<Output>_<Type_9> := 77

end Get_<Output>_<State_3>_From;

procedure Give_<Attribute_l>_To (A_<Object> : in <Object>;
Given_<Attribute_l> : in <Attribute_l>) is

-I Description:
— I Initiates a change in the specified <object> object's
— I state given the <attribute_l>.
-I
— I Parameter Description:

CMU/SEI-88-TR-30 75

A_<object> identifies the <object> whose state is to be changed.
Given_<attribute_l> is the <attribute_l>, in <attribute_l_units>

Notes:
none

begin
null;

- procedure body goes here

end Give_<Attribute_l>_To;

procedure Give_<Attribute_2>_To (
A_<Object> : in <Object>; Given_<Attribute_2> : in <Attribute_2>) is

_|***
Description:

Initiates a change in the specified <object> object's
state given the <attribute_2>.

Parameter Description:
A_<object> identifies the <object> whose state is to be changed.
Given_<attribute_2> is the <attribute_2>, in <attribute_2_units>

Notes:
none

begin
null;

-procedure body goes here

end Give_<Attribute 2> To

procedure Give_<Attribute_3>_To (
A_<Object> : in <Object>; Given_<Attribute_3> : in <Attribute_3>) is

I***

Description:
Initiates a change in the specified <object> object's
state given the <attribute_3>.

Parameter Description:
A_<object> identifies the <object> whose state is to be changed.
Given_<attribute_3> is the <attribute_3>, in <attribute_3_units>

Notes:
none

begin
null;

— procedure body goes here

end Give_<Attribute_3>_To;

end <Object>_Object_Manager;

76 CMU/SEI-88-TR-30

Appendix C: Engine code

The Ada code that follows implements a simulator Engine system. The implementation is
complete through the package specifications. The intent is to demonstrate the software ar-
chitecture defined by the paradigm discussed in Chapter 4.

C.l. Package GlobalJTypes
_***

Module Name:
Global Types

Module Type:
Package Specification

Module Purpose:
provide global types for use throughout the simulator code

Module Description:
This package provides global types for use throughout the simulator
code. The types include those necessary for compliance with the
Boeing ASVP Ada code.

Type Execution Sequence defines the frames to be used by the
executives during the cyclic execution of the code.

References:
Design Documents:

none

User's Manual:
none

Testing and Validation:
none

Notes:
none

Modification History:
24Apr87 kl created

Distribution and Copyright Notice:
Distribution unlimited

CMU/SEI-88-TR-30 77

No warranty is implied.

Disclaimer:
"This work was sponsored by the Department of Defense."

package Global_Types is

type Execution_Sequence ia (Prame_l_Modules_Are_Executed,
Frame_2_ModuIes_Are_Executed,
Frame_3_Modules_Are_Executed,
Frame_4_Modules_Are_Executed,
Frame_5_Modules_Are_Executed,
Frame_6_Modules_Are_Executed,
Frame_7_Modules_Are_Executed,
Frame_8_Modules_Are_Executed);

end Global_Types;

C.2. Package Standard_Engineering_Types

Module Name:

Standard JEngineering_Types

Module Type:
Package Specification

Module Purpose:
This package defines some standard engineering symbols and units

which are used in the Flight_Executive.

Module Description:
The standard engineering symbols, thier range and units of measure

are specified in this package. All objects and types in the
flight system which are represented in the real world in these units
should be derived from these types. New derived types can be expressed
as follows:

type MyJBlark is new Standard_Engineering_Types.Blark;

References:
Design Documents:

User's Manual:
none

Testing and Validation:
none

Notes:
none

Modification History:
25AUG87 cpp creation

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied.

Disclaimer:

78 CMU/SEI-88-TR-30

— I "This work was sponsored by the Department of Defense."
-I

package Standard_Engmeenng_Types is

type Pressure is digits 6 range 0.0 .. 10000.0;
— pound per square inch
type Temperature is range 300 .. 3000;
— degrees Rankine
type Air_Flow is digits 4 range 0.0 .. 500.0;
— pounds per second
type Thrust is digits 6 range 0.0 .. 20250.0;
— pounds
type Rpra is range 0 .. 20000;
— revolutions per minute
type Torque is range 0 .. 10000;
— pound feet

end Standard_Engineering_Types;

C.3. Package Bleed_Valve_Object_Manager
*****»*»*»***»**»»»*********»****»***»*»+»•***+*»»****»*»»»»*****

Module Name:
Bleed J/alve _Object_Manager

Module Type:
Package Specification

Module Purpose:
This package manages objects which simulate the
Engine Bleed Valve for the C-141 simulator.
This management entails creation of Bleed_Valve object's
update, maintenance of its state, and state
reporting capabilities.

Module Description:
The BleedJValve object manager provides a means to create
an Bleed_Valve object via the New_Bleed_Valve operation and returns
an identification for the Bleed Valve, which is to be used when
updating /accessing the Bleed_Valve object's state as described below.

The Bleedjfalve object manager provides a means to update the
state of the object via the:

1) Give_Inlet_Air_Flow_To
2) Give_Inlet_Pressure_To

operations, requiring the following external state information:
1) Inlet_Air_Flow pounds per second
2) Inlet ^Pressure pounds per square inch

The Bleed_Valve object manager provides a means of obtaining
state information via the:

1) GetJ)ischarge_Air_Flow_From
2) Get_Discharge_Pressure_From

operations, yielding the following internal state information:
1) Discharge_Air_Flow pounds per second
2) DischargeJPressure pounds per square inch

References:
none

Design Documents:

CMU/SEI-88-TR-30 79

User's Manual:
none

Testing and Validation:
none

Notes:
none

Modification History:
24Aug87 cpp Creation

13Jul88 kl Modified

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied.

Disclaimer:
"This work was sponsored by the Department of Defense."

with Standard_Engineering_Types;

package Bleed_Valve_Object_Manager ia

package Set renames Standard_£ngineering_Types;

type Bleed_Val ve is private ;
~ an BleedJ/alve is an abstraction of a BleedJ/alve within an Engine.

function New_Bleed_Valve return Bleed_Valve;
_|»»*«***»»»*»*»»»***»**»»»*»•****»*»*»**»«*»»*»»*»•»**»*»•*»**»«»»

Description:
This function returns a pointer to a new BleedJ/alve object
representation. This pointer will be used to identify
the object for state update and state reporting purposes.

Parameter Description:
return Bleed_Valve which is an access to a Bleed_Valve object.

procedure Give_Inlet_Air_Flow_To (A_Bleed_Valve : in Bleed_Valve;
Given_Inlet_Air_Flow : in Set.Air_Flow);

I***

Description:
Initiates a change in the specified BleedJ/alve object's
state given the Inlet _AirJ"low.

Parameter Description:
A_Bleed_Valve identifies the BleedJ/alve whose state is
to be changed.
Given Jnlet_Air_Flow is the Inlet Air_Flow, in pounds per second

procedure Give_Inlet_Pressure_To (A_Bleed_Valve : in Bleed_Valve;
Given_Inlet_Pressure : in Set.Pressure);

_|»••»»**•**»**•**»***•***********»*»»**»»»»*»**»*»*»***»**»*»»»»»*

— I Description:
— I Initiates a change in the specified BleedJ/alve object's

80 CMU/SEI-88-TR-30

state given the Inlet_Pressure.

Parameter Description:
A_Bleed_Valve identifies the Bleed_Valve whose state is
to be changed.
Given_Inlet_Pressure is the Inlet Pressure, in pounds per
square inch

procedure Get_Discharge_Air_Flow_From
(A_Bleed_Valve : in Bleed_Valve;
Retuming_Discharge_Air_Flow : out Set-Air_Flow);

I ***

Description:
Initiates a report of the specified Bleed _Valve object's
state returning the Discharge_Air_Flow.

Parameter Description:
A_Bleed_Valve identifies the Bleed Valve whose state is needed.
ReturningJOischarge_Air_Flow is the Discharge_Air_Flow portion

of Bleed_Valve object's state, in pounds per second

procedure Get_Discharge_Pre8sure_From
(A_Bleed_Valve: in Bleed_Valve;
Rotuming_Di8charge_Pressure : out Set.Preasure);

t ***

Description:
Initiates a report of the specified Bleed_Valve object's
state returning the Discharge_Pressure.

Parameter Description:
A_Bleed_Valve identifies the Bleed_Valve whose state is needed.
Retuming_Discharge_Pressure is the Discharge_Pressure portion

of Bleed Valve object's state, in pounds per square inch

pragma Inline (Give_Inlet_Air_Flow_To, Get_Discharge_Air_Flow_From,
Give_Inlet_Pressure_To, Get_DiBcharge_Pressure_From);

private
type Bleed_Valve_Representation;
- incomplete type, defined in package body

type Bleed_Valve is access Bleed_Valve_Representation;
- pointer to an Bleed_Valve representation

end Bleed_Valve_Object_Manager,

C.4. Package Burner_Object_Manager

-I Module Name:
— I Burner_Object_Manager
-I
-1 Module Type:
— I Package Specification
-I
— I Module Purpose:
— I This package manages objects which simulate the

CMU/SEI-88-TR-30 81

Engine Burner for the C-141 simulator.
This management entails creation of Engine Burner objects,
update and maintenance of its state, and finally state
reporting capabilities.

Module Description:
The Engine Burner object manager provides a means to create
an Burner object via the NewJSurner entry and returns
an identification for the Burner, which is to be used when
updating / accessing the Burner objects state as described below.

The Engine Burner object manager provides a means to update the
state of the object via the:

1) Give_InletJlir_To
2) Give_Fuel_Flow_To
3) Give_Spark_To

entries, requiring the following external state information:
1) Inlet_Pressure pounds per square inch

Inlet JTempercUure degrees Rankine
Inlet_Air_Flow pounds per second

2) The_Fuel_Flow pounds per second
3) TheJSpark joules

The Engine Burner object manager provides a means of obtaining
state information via the:

1) Get_Discharge_Air_From
entries, yielding the following internal state information:

1) Discharge_Pressure pounds per square inch
Discharge^Temperature degrees Rankine
Discharge_Air_Flow pounds per second

References:
none

Design Documents:
none

User's Manual:
none

Testing and Validation:

Notes:
none

Modification History:
24Aug87 cpp Creation

13Jul88 kl Modified

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied.

Disclaimer:
"This work was sponsored by the Department of Defense."

with Standard_Engineering_Types;

package Bumer_Object_Manager is

82 CMU/SEI-88-TR-30

package Set renames Standard_Engineering_Types;

type Burner is private ;
- an Burner is an abstraction of a Burner within an Engine.

type Spark is (None, Low, High);
- burner needs only to know relative spark size

type Puel_Flow is (None, Flowing);
- the burner needs to know only if it has fuel available

function New_Bumer return Burner;
_ ***

Description:
This function returns a pointer to a new Burner object
representation. This pointer will be used to identify
the object for state update and state reporting purposes.

Parameter Description:
return Burner which is an access to a Burner object.

procedure Give_Inlet_Air_To (A_Bumer : in Burner;
Given_Inlet_Pressure : in Set.Pressure;
Given_Inlet_Temperature : in Set.Temperature;
Given_Inlet_Air_Flow : in SetAir_Flow);

_|***
Description:

Initiates a change in the specified Burner object's
state given the Inlet JPressure, Inlet JTemperature,
and the Inlet_Air_Flow.

Parameter Description:
A_Burner identifies the Burner whose state is to be changed.
Given_Inlet_Pressure is the Inlet Pressure, in pounds per

square inch
Given_Inlet_Temperature is the Inlet Temperature, in degrees Rankine
Qiven_Inlet_Air_Flow is the inlet air flow, in pounds per second,

procedure Get_Discharge_Air_From
(A_Bumer: in Burner,
Returnmg_Discharge_Pressure : out Set.Pressure;
Returning_Discharge_Temperature: out Set.Temperature;
Retarning_Discnarge_Air_Flow: out Set_Air_Flow);

I ***

Description:
Initiates a report of the specified Burner object's
state returning the Discharge_Pressure,
Discharge JTemperature, and the Discharge _AirJ"low.

Parameter Description:
A_Burner identifies the Burner whose state is needed.
Returning_J)ischarge_Pressure is the Discharge_Pressure portion

of Burner object's state, in pounds per square inch
Returning_Pischarge_Temperature is the Discharge JTemperature portion

of Burner object's state, in degrees Rankine
Returning_Discharge_Air_Flow is the Discharge_Air_Flow portion

of Burner object's state, in pounds per second

procedure Give_Fuel_Flow_To (A_Bumer : in Burner;
Given_Fuel_Flow : in Fuel_Flow);

CMU/SEI-88-TR-30 83

Description:

Initiates a change in the specified Burner object's
state given the Fuel_Flow.

Parameter Description:
A_Burner identifies the Burner whose state is to be changed.
Given_Fuel_Flow is the Fuel_Flow, in pounds per second,

procedure Give_Spark_To (A_Burner : in Burner; Given_Spark : in Spark);
_ |***

Description:
Initiates a change in the specified Burner object's
state given the Spark.

Parameter Description:
AJBurner identifies the Burner whose state is to be changed.
GivenjSpark is the Spark, in joules,

pragma Inline (Give_Inlet_Air_To, Get_Discharge_Air_From,
Give_Fuel_Flow_To, Give_Spark_To);

private
type Bumer_Representation;
- incomplete type, defined in package body

type Burner is access Burner_Representation;
— pointer to an Burner representation

end Bumer_Object_Manager,

C.5. Package body Burner_Object_Manager

Module Name:

Burner Object Manager

Module Type:
Package Body

Module Description:
The Engine Burner object manager provides a means to create
an Burner object via the New_Burner entry and returns
an identification for the Burner, which is to be used when
updating / accessing the Burner objects state as described below.

The Engine Burner object manager provides a means to update the
state of the object via the:

1) Give_Inlet_Air_To
2) Give_Fuel_Flow_To
3) Give_Spark_To

entries, requiring the following external state information:
1) Inlet_Pressure pounds per square inch

Inlet JTemperature degrees Rankine
Inlet_Air_Flow pounds per second

2) The_Fuel_Flow pounds per second
3) The_Spark joules

84 CMU/SEI-88-TR-30

The Engine Burner object manager provides a means of obtaining
state information via the:

1) Get_Discharge_Air_From
entries, yielding the following internal state information:

1) Discharge_Pressure pounds per square inch
Discharge ^Temperature degrees Rankine
Discharge_Air_Flow pounds per second

References:
Design Documents:

none

Testing and Validation:
none

Notes:
none

Modification History:
24Aug87 cpp Creation
13Jul88kl Modified

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied.

Disclaimer:
"This work was sponsored by the Department of Defense."

********************** ************************* ******************

package body Bumer_Object_Manager is

type Burner_Representation is
record

Inlet_Pressure : Set.Pressure := 0.0;
Inlet_Temperature : Set.Temperature := 300;
Inlet_Air_Flow : SetAir_Flow := 0.0;
The_Spark : Spark := High;
The_Puel_Flow : Fuel_Flow := Flowing;
Discharge_Pressure : Set.Pressure := 0.0;
Discharge_Temperature : Set.Temperature := 300;
Discharge_Air_Flow : Set.Air_Flow := 0.0;

end record ;

function New_Bumer return Burner is
I***

Description:
This function returns a pointer to a new Burner object
representation. This pointer will be used to identify
the object for state update and state reporting purposes.

Parameter Description:
return Burner which is an access to a Burner object.

Notes:

_|***

begin

- function body goes here

RETURN null;
end New_Bumer;

CMU/SEI-88-TR-30 85

procedure Give_Inlet_Air_To (A_Bumer : in Burner;
Given_Inlet_Pressure : in Set.Pressure;
Given_Inlet_Temperature : in Set.Temperature;
Given_Inlet_Air_Flow : in Set.Air_Flow) is

Description:
Initiate* i change in the specified Burner object's
state given the Inlet_Pressure, Inlet ^Temperature,
and the Inlet_Air_Flow.

Parameter Description:
AJBurner identifies the Burner whose state is to be changed.
Given_Inlet_Pressure is the Inlet Pressure, in pounds per

square inch
Given_Inlet_Temperature is the Inlet Temperature, in degrees Rankine
Given_Inlet_Air_Flow is the inlet air flow, in pounds per second,

Notes:

begin
null;

— procedure body goes here

end Give_Inlet_Air_To;

procedure Get_Discharge_Air_From
(A_Bumer: in Burner,
Retunnng_Discharge_Pressure : out Set.Pressure;
Returning_Discharge_Temperature: out Set.Temperature;
Returning_Discharge_Air_Flow : out Set.Air_Flow) is

_|**»•*********»***«•***»»*******»*******»****»•*»**«****»***»****»

Descriptions
Initiates a report of the specified Burner object's
state returning the Discharge_Pressure,
Discharge_Temperature, and the Discharge__Air_Flow.

Parameter Description:
A_Burner identifies the Burner whose state is needed.
Returning_Discharge_Pressure is the Discharge_Pressure portion

of Burner object's state, in pounds per square inch
Returning_Discharge_Temperature is the Discharge .Temperature portion

of Burner object's state, in degrees Rankine
Returning_Pischarge_Air_Flow is the Discharge_Air_Flow portion

of Burner object's state, in pounds per second

Notes:

begin
null;

- procedure body goes here

Returning_Discharge_Pressure := 0.0;
Returning_Discharge_Temperature := 300;
Returning_Discharge_Air_Flow := 0.0;

end Get_Discharge_Air_From;

procedure Give_Fuel_Flow_To (A_Bumer : in Burner;

86 CMU/SEI-88-TR-30

Given_Fuel_Flow : in Puel_Flow) is

Description:

Initiates a change in the specified Burner object's
state given the Fuel_Flow.

Parameter Description:
A_Burner identifies the Burner whose state is to be changed.
Given_Fuel_Flow is the Fuel_Flow, in pounds per second,

Notes:

»»•»*»**»****»»»»•***»****«*»»»*»*»*•*»*•»»**»»*»»**»«****»****

begin
null;

— procedure body goes here

end Give_Fuel_Flow_To;

procedure Give_Spark_To (A_Bumer : in Burner; Given_Spark : in Spark) is
I ***

Description:
Initiates a change in the specified Burner object's
state given the Spark.

Parameter Description:
AJSurner identifies the Burner whose state is to be changed.
GivenJSpark is the Spark, in joules,

Notes:

begin
null;

— procedure body goes here

end Give_Spark_To;

end Bumer_Object_Manager;

C.6. Package Diffuser_Object_Manager

Module Name:
DiffuserJ)bject_Manager

Module Type:
Package Specification

Module Purpose:
This package manages objects which simulate the
Engine Diffuserfor the C-141 simulator.
This management entails creation ofDiffuser object's
update, maintenance of its state, and state
reporting capabilities.

Module Description:

CMU/SEI-88-TR-30 87

The Diffuser object manager provides a means to create
an Diffuser object via the New JDiffuser operation and returns
an identification for the Diffuser, which is to be used when
updating / accessing the Diffuser object's state as described below.

The Diffuser object manager provides a means to updai.^ the
state of the object via the:

1) Give_Inlet_Pressure_and_Temperature_To
2) Give_Mach_Number_To
operations, requiring the following external state information:
1) Inlet _Pressure pounds per square inch
Inlet JTemperature degrees Ranking

2) The_Mach_Number <dimensionless>

The Diffuser object manager provides a means of obtaining
state information via the:

1) Get_Discharge_Air_From
operations, yielding the following internal state information:

1) Discharge _Pressure pounds per square inch
Discharge JTemperature degrees Rankine
Discharge_Air_Flow pounds per second

References:
none

Design Documents:

User's Manual:
none

Testing and Validation:
none

Note*:
none

Modification History:
24Aug87 cpp Creation

13Jul88 kl Modified

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied

Disclaimer:
"This work was sponsored by the Department of Defense."

with Standard_Engineering_Types;

package Diffuser_Object_M a nager is

package Set renames Standard_Engineering_Types;

type Diffuser is private ;
- an Diffuser is an abstraction of a Diffuser within an Engine.

type Mach_Number is digits 3 range 0.00 .. 1.00;
—<dimensionless>

function New_Diffuser return Diffuser,

88 CMU/SEI-88-TR-30

Description:
This function returns a pointer to a new Diffuser object
representation. This pointer will be used to identify
the object for state update and state reporting purposes.

Parameter Description:
return Diffuser which is an access to a Diffuser object.

procedure Give_Inlet_Pressure_And_Temperature_To
(A_Difruser : in Diffuser,
Given_InIet_Pressure : in Set.Pressure;
Given_Inlet_Temperature : in Set.Temperature);

I***

Description:
Initiates a change in the specified Diffuser object's
state given the Inlet_Pressure, Inlet JTemperature.

Parameter Description:
A_Diffuser identifies the Diffuser whose state is to be changed.
Given_Inlet_Pressure is the Inlet Pressure, in pounds per
square inch
Given _lnlet JTemperature is the Inlet Temperature, in degrees Rankine

procedure Get_Discharge_Air_From
(A_Diffuser: in Diffuser,
Returning_Discharge_Pressure : out Set.Pressure;
Returning_Discharge_Temperature : out Set.Temperature;
Retuming_Discharge_Air_Flow : out Set.Air_Flow);

_I***

Description:
Initiates a report of the specified Diffuser object's
state returning the Discharge_Pressure,
Discharge JTemperature, and the Discharge_Air_Flow.

Parameter Description:
A_Diffuser identifies the Diffuser whose state is needed.
Returning_Discharge_Pressure is the Discharge_Pressure portion

of Diffuser object's state, in pounds per square inch
Returning_DischargeJTemperature is the Discharge JTemperature portion

of Diffuser object's state, in degrees Rankine
Returning_Discharge_Air_Flow is the Discharge_Air_Flow portion

of Diffuser object's state, in pounds per second

procedure Give_Mach_Number_To (A_Diffuser : in Diffuser;
Given_Mach_Number: in Mach_Number);

.. |***
Description:

Initiates a change in the specified Diffuser object's
state given the Mach_Number.

Parameter Description:
A_Diffuser identifies the Diffuser whose state is to be changed.
Given_Mach_Number is the Mach_Number, in <dimensionless>

pragma Inline (Give_Inlet_Pressure_And_Temperature_To,
Get_Discharge_Air_From, Give_Mach_Number_To);

CMU/SEI-88-TR-30 89

private
typo Diffuser_Representation;
~ incomplete type, defined in package body

type Diffuser is access Diffuser_Representation;
— pointer to an Diffuser representation

end Difiuser_Object_Manager;

C.7. Package Engine_Casing_Object_Manager
»»•»»*********»********»*»*****»*•***+****»**•***************

Module Name:
Engine jCasingjDbjectJAanager

Module Type:
Package Specification

Module Purpose:
This package manages objects which simulate the
Engine Engine_ Casing for the C-141 simulator.
This management entails creation of Engine jCasing object's
update, maintenance of its state, and state
reporting capabilities.

Module Description:
The Engine Casing object manager provides a means to create
an Engine, Casing object via the New_Engine JCasing operation and returns
an identification for the EnginejCasing, which is to be used when
updating I accessing the Engine_Casing object's state as described below.

The EnginejCasing object manager provides a means to update the
state of the object via the:

1) Give_Inlet_Pressure_To
2) Give_Inlet_Air_Flow_To
3) GiveJnlet_Temperature_To

operations, requiring the following external state information:
1) Inlet_Pressure pounds per square inch
2) Inlet_Air_Flow pounds per second
3) InletJTemperature degress Rankine

The EnginejCasing object manager provides a means of obtaining
state information via the:

1) GetjDischargeJPressureJFrom
2) Get_Discharge_Air_Flow_From
3) Get_Pischarge_Temperature_From

operations, yielding the following internal state information:
1) Discharge_Pressure pounds per square inch
2) Discharge_Air_Flow pounds per second
3) DischargeJTemperature degress Rankine

References:
none

Design Documents:

User's Manual:
none

Testing and Validation:

90 CMU/SEI-88-TR-30

Notes:
none

Modification History:
24Aug87 cpp Creation

13Jul88 kl Modified

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied.

Disclaimer:
"This work was sponsored by the Department of Defense."

with Standard_Engineering_Types;

package Engine_Casing_Object_Manager is

package Set renames Standard_Engineering_Types;

type Engine_Casing is private ;
— an Engine Casing is an abstraction of a EnginejCasing within an Engine.

function New_Engine_Casing return Engine_Casing;
I***

Description:
This function returns a pointer to a new EnginejCasing object
representation. This pointer will be used to identify
the object for state update and state reporting purposes.

Parameter Description:
return EnginejCasing which is an access to a EnginejCasing object.

procedure Give_Inlet_Pressure_To (A_Engine_Casing : in Engine_Casing;
Given_Inlet_Pressure : in Set.Pressure);

_I ***

Description:
Initiates a change in the specified EnginejCasing object's
state given the Inlet ^Pressure.

Parameter Description:
AJEnginejCasing identifies the EnginejCasing whose state is
to be changed.
Given_Inlet_Pressure is the Inlet Pressure, in pounds
per square inch

procedure Give_Inlet_Air_Flow_To (A_Engine_Casing : in Engine_Casing;
Given_Inlet_Air_Flow : in SetAir_Flow);

Description,-
Initiates a change in the specified EnginejCasing object's
state given the Inlet _AirJFlow.

Parameter Description:
AJEnginejCasing identifies the EnginejCasing whose state is
to be changed.

CMU/SEI-88-TR-30 91

I Given_Inlet_AirJ?low is the Inlet AirJFlow, in pounds per second

procedure Give_Inlet_Temperature_To
(A_Engine_Casing : in Engine_Casing;
Given_Inlet_Temperature : in Set.Temperature);

_***
Description:

Initiates a change in the specified Engine_Casing object's
state given the Inlet JTemperature.

Parameter Description:
A_Engine_Casing identifies the EnginejCasing whose state is
to be changed.
Given_Inlet_Temperature is the Inlet Temperature, in degress Rankine

»»***»*»*»*»+»»»********•**»*****»»**»*»*»•*************»**

procedure Get_Discharge_Pressure_From
(A_Engine_Casing: in Engine_Casing;
Returning_Discharge_Pressure : out Set.Pressure);

„ |***

Description:
Initiates a report of the specified Engine_Casing object's
state returning the Discharge_Pressure.

Parameter Description:
A_Engine_Casing identifies the EnginejCasing whose state is needed.
Returning_DischargeJPressure is the Discharge_Pressure portion

of Engine _Casing object's state, in pounds per square inch

procedure Get_Discharge_Air_Flow_From
(A_Engine_Casing : in Engine_Casing;
Returning_Discharge_Air_Flow : out Set.Air_Flow);

_l***

Description:
Initiates a report of the specified EngineJCasing object's
state returning the Discharge_Air_Flow.

Parameter Description:
AJEnginejCasing identifies the EnginejCasing whose state is needed.
ReturningJDischarge_Air_Flow is the Discharge_Air_Flow portion

of EnginejCasing object's state, in pounds per second

procedure Get_Discharge_Temperature_From
(A_Engine_Casing : in Engine.Casing;
Retuming_Discharge_Temperature: out Set.Temperature);

Description:

Initiates a report of the specified EnginejCasing object's
state returning the DischargeJTemperature.

Parameter Description:
AJEnginejCasing identifies the EnginejCasing whose state is needed.
ReturningJDischargeJTemperature is the DischargeJTemperature portion

of EnginejCasing object's state, in degress Rankine

pragma Inline (Give_Inlet_Pressure_To, Get_Discharge_Pressure_From,
Give_Inlet_Air_Flow_To, Get_Discharge_Air_Flow_From,
Give_Inlet_Temperature_To, Get_Discharge_Temperature_Prom);

92 CMU/SEI-88-TR-30

private
type Engine_Casing_Representation;
— incomplete type, defined in package body

type Engine_Casing ia access Engine_Casing_Representation;
- pointer to an EnginejCasing representation

end Engine_Casing_Object_Manager;

C.8. Package Exhaust_Object_Manager

Module Name:

Exhaust _Object_Manager

Module Type:
Package Specification

Module Purpose:
This package manages objects which simulate the
Engine Exhaust for the C-141 simulator.
This management entails creation of Exhaust object's
update, maintenance of its state, and state
reporting capabilities.

Module Description:
The Exhaust object manager provides a means to create
an Exhaust object via the New_Exhaust operation and returns
an identification for the Exhaust, which is to be used when
updating / accessing the Exhaust object's state as described below.

The Exhaust object manager provides a means to update the
state of the object via the:

1) Give_lnlet_Pressure_To
operations, requiring the following external state information:
1) Inlet JPressure pounds per square inch

The Exhaust object manager provides a means of obtaining
state information via the:

1) Get_Discharge_Thrust_From
2) Get_Egt_From
3) Get_Epr_From

operations, yielding the following internal state information:
1) DischargeJThrust pounds per square inch
2) Egt degrees Rankine
3) The_Epr <diemensionless>

References:
none

Design Documents:
none

User's Manual:
none

Testing and Validation:

Notes:
none

CMU/SEI-88-TR-30 93

Modification History:
24Aug87 cpp Creation

13Jul88 kl Modified

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied

Disclaimer:
"This work was sponsored by the Department of Defense."

with Standard_Engineering_Types;

package Exhaust_Object_Manager is

package Set renames Standard_Engineering_Types;

type Exhaust is private ;
— an Exhaust is an abstraction of a Exhaust within an Engine.

type Epr is digits 2 range 1.2 .. 2.3;
— <dimensionless>

function New_Exhaust return Exhaust;
I****»************»*»***•**»****»***»*********»**•***»»*****»••»**

Description:
This function returns a pointer to a new Exhaust object
representation. This pointer will be used to identify
the object for state update and state reporting purposes.

Parameter Description:
return Exhaust which is an access to a Exhaust object.

procedure Give_Inlet_Pressure_To (A_Exhaust: in Exhaust;
Given_Inlet_Pressure : in Set.Pressure);

I***

Description:
Initiates a change in the specified Exhaust object's
state given the Inlet JPressure.

Parameter Description:
AJSxhaust identifies the Exhaust whose state is to be changed.
Given_Inlet_Pressure is the Inlet Pressure, in pounds per
square inch

procedure Get_Discharge_Thrust_From
(A_Exhaust: in Exhaust;
Retuming_Discharge_Thrust: out Set.Pressure);

_|***
Description:

Initiates a report of the specified Exhaust object's
state returning the DischargeJThrust.

Parameter Description:
AJSxhaust identifies the Exhaust whose state is needed.
Returning_Discharge_Thrust is the DischargeJThrust portion

of Exhaust object's state, in pounds per square inch

94 CMU/SEI-88-TR-30

_I ***

procedure Get_Egt_From (A_Exhaust: in Exhaust;
Retuming_Egt: out Set.Temperature);

_^***
--I Description:
~ I Initiates a report of the specified Exhaust object's
— I state returning the Egt.
-I
— I Parameter Description:
-1 A_Exhaust identifies the Exhaust whose state is needed.
-1 ReturningJEgt is the Egt portion
— I of Exhaust object's state, in degrees Rankine
_|••»••****»*»*«*«»*»»*»»»****«•»*•**«**»***»*****»•»»**•»»*»»»«**«

procedure Get_Epr_From (A_Exhaust: in Exhaust; Retuming_Epr : out Epr);
__ ^***
-1 Description:
— I Initiates a report of the specified Exhaust object's
--1 state returning the Epr.
~\
-1 Parameter Description:
— I A_Exhaust identifies the Exhaust whose state is needed.
— I Returning JEpr is the Epr portion
-1 of Exhaust object's state, in <diemensionless>
_ | ***

pragma Inline (Give_Inlet_Pressure_To, Get_Discharge_Thrust_From,
G*t_Egt_FTom, Get_Epr_From);

private
type Exhaust_Representation;
— incomplete type, defined in package body

type Exhaust is access Exhaust_Representation;
- pointer to an Exhaust representation

end Exhaust_Object_Manager;

C.9. Package Fan_Duct_Object_Manager

Module Name:
Fan_Duct_Object_Manager

Module Type:
Package Specification

Module Purpose:
This package manages objects which simulate the
Engine Fan_Duct for the C-141 simulator.
This management entails creation of Fan_Puct object's
update, maintenance of its state, and state
reporting capabilities.

Module Description:
The Fan_Duct object manager provides a means to create
an Fan_Duct object via the New_Fan_Duct operation and returns
an identification for the Fan_Duct, which is to be used when

CMU/SEI-88-TR-30 95

updating I accessing the Fan_Duct object's state as described below.

The Fan_Duct object manager provides a means to update the
state of the object via the:

1) Give_Inlet_Pressure_To
operations, requiring the following external state information:
1) Inlet_Pressure pounds per square inch

The Fan_Duct object manager provides a means of obtaining
state information via the:

1) Get_Discharge_Thrust_From
operations, yielding the following internal state information:

1) DischargeJThrust pounds

References:
none

Design Documents:
none

User's Manual:
none

Testing and Validation:
none

Notes:
none

Modification History:
24Aug87 cpp Creation

13Jul88 kl Modified

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied.

Disclaimer:
"This work was sponsored by the Department of Defense."

with Standard_Engineering_Types;

package Fan_Duct_Object_Manager is

package Set renames Standard_Engineering_Types;

type Fan_Duct is private ;
~ an Fan_Duct is an abstraction of a Fan_Duct within an Engine.

function New_Fan_Duct return Fan_Duct;
..|***

Description:
This function returns a pointer to a new Fan_Duct object
representation. This pointer will be used to identify
the object for state update and state reporting purposes.

Parameter Description:
return Fan_Duct which is an access to a Fan_Duct object.

96 CMU/SEI-88-TR-30

procedure Give_Inlet_Pressure_To (A_Fan_Duct: in Fan_Duct;
Given_Inlet_Pressure : in Set.Pressure);

__ |***
Description:

Initiates a change in the specified Fan_Duct object's
state given the Inlet JPressure.

Parameter Description:
A_Fan_Duct identifies the Fan_Duct whose state is to be changed.
Given_Inlet_Pressure is the Inlet Pressure, in pounds per
square inch

procedure Get_Dischargejrhrust_From
(A_Fan_Duct: in Fan_Duct;
Returning_Discharge_Thrust: out Set.Thrust);

„ |••»»»**•••***»*«»•»*••*»*»*»*•»»»»***»*»»*»*•»**»•***»*»*»»»»****

Description:
Initiates a report of the specified Fan_Duct object's
state returning the DischargeJThrust.

Parameter Description:
A_FanJ)uct identifies the Fan_Dud whose state is needed.
Returning_DischargeJThrust is the DischargeJThrust portion

ofFan_Duct object's state, in pounds

pragma Inline (Give_Inlet_Pressure_To, Get_Di8charge_Thrust_From);

private
type Fan_Duct_Representation;
— incomplete type, defined in package body

type Fan_Duct is access Fan_Duct_Representation;
— pointer to an Fan_Duct representation

end Fan_Duct_Object_Manager;

CIO. Package Rotorl_Object_Manager

Module Name:

Rotor 1 _Object_Manager

Module Type:
Package Specification

Module Purpose:
This package manages objects which simulate the
Engine Rotorl for the C-141 simulator.
This management entails creation of Rotorl object's
update, maintenance of its state, and state
reporting capabilities.

Module Description:
The Rotorl object manager provides a means to create
an Rotorl object via the New_Rotorl operation and returns
an identification for the Rotorl, which is to be used when
updating / accessing the Rotorl object's state as described below.

CMU/SEI-88-TR-30 97

The Rotorl object manager provides a means to update the
state of the object via the:

1) Give_Fanl_Inlet_Air_To
2) Give_Turbinel_lnlet_Air_To

operations, requiring the following external state information:
1) Fanl_lnlet_Pressure pounds per square inch
Fanl_Inlet_Temperature degrees Rankine

Fanl_Inlet_Air_Flow pounds per second
2) Turbinel_Inlet_Pressure pounds per square inch
Turbinel_InletJTemperature degrees Rankine

Turbinel_Inlet_Air_Flow pounds per second

The Rotorl object manager provides a means of obtaining
state information via the:

1) Get_Fanl_Discharge_AirJrrom
2) Get_Turbinel_Discharge_Air_From
3) Get_Rpm_From
4) Get_Vibration_From

operations, yielding the following internal state information:
1) Fanl_Discharge_Pres8ure pounds per square inch

Fanl_Discharge_Temperature degrees Rankine
Fanl_Discharge_Air_Flow pounds per second

2) Turbinel_Discharge_Pressure pounds per square inch
Turbinel_Discharge_Temperature degrees Rankine
Turbinel_Discharge_Mr_Flow pounds per second

3) TheJRpm rpm
4) TheVibration mils

References:
none

Design Documents:
none

User's Manual:
none

Testing and Validation:
none

Notes:
none

Modification History:
24Aug87 cpp Creation

13Jul88 kl Modified

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied

Disclaimer:
"This work was sponsored by the Department of Defense."

•»**»#«•*»»»»»*******»**••*•**••**»**»******»*»*****•*»»»*«*»*»*****»**»*

with Standard_Engineering_Types;

package Rotor l_Object_Manager ia

package Set renames Standard_Engineering_Types;

98 CMU/SEI-88-TR-30

type Rotorl is private ;
~ an Rotorl is an abstraction of a Rotorl within an Engine.

type Vibration is range 0 .. 5;
- mils

function New_Rotorl return Rotorl;
I ***

Description:
This function returns a pointer to a new Rotorl object
representation. This pointer will be used to identify
the object for state update and state reporting purposes.

Parameter Description:
return Rotorl which is an access to a Rotorl object.

procedure Give_Fanl_Inlet_Air_To
(A_Rotorl : in Rotorl;
Given_Fanl_Inlet_Pressure : in Set.Pressure;
Given_Fanl_Inlet_Temperature : in Set.Temperature;
Given_Fanl_Inlet_Air_Flow: in Set.Air_Flow);

Description:
Initiates a change in the specified Rotorl object's
state given the Fanl_Inlet_Pressure, Fanl_Inlet_Temperature,
and the Fanl_Inlet_Air_Flow.

Parameter Description:
AJRotorl identifies the Rotorl whose state is to be changed.
Given_Fanl_Inlet_Pressure is the Inlet Pressure, in pounds
per square inch
Given_Fanl_Inlet_Temperature is the Inlet Temperature,
in degrees Rankine
Given_Fanl_Inlet_Air_Flow is the Inlet Air_Flow, in pounds
per second

procedure Give_Turbinel_Inlet_Air_To
(A_Rotorl: in Rotorl;
Given_Turbinel_Inlet_Pressure : in Set.Pressure;
Given_Turbinel_Inlet_Temperature : in Set.Temperature;
Given_Turbinel_Inlet_Air_Flow : in Set.Air_Flow);

_I ***

Description:
Initiates a change in the specified Rotorl object's
state given the Turbinel_Inlet_Pressure, Turbinel_Inlet_Temperature,
and the Turbinel_Inlet_Air_Flow.

Parameter Description:
A_Rotorl identifies the Rotorl whose state is to be changed.
Given_Turbinel_Inlet_Pressure is the Inlet Pressure,
in pounds per square inch
Given_Turbinel_Inlet_Temperature is the Inlet Temperature,
in degrees Rankine
Given_TurbinelJnlet_Air_Flow is the Inlet Air_Flow, in
pounds per second

»»***••»•«****»*»•»»»»***»»**»**»****»*»»*»»»«**»»»**»*»»•»**»*»*

procedure Get_Fanl_Discharge_Air_From
(A_Rotorl : in Rotorl;
Retuming_Fanl_Discharge_Pressure : out Set.Pressure;
Retuming_Fanl_Discharge_Temperature : out Set.Temperature;
Retuming_Fanl_Discharge_Air_Flow : out Set.Air_Flow);

CMU/SEI-88-TR-30 99

Description:

Initiates a report of the specified Rotor 1 object's
state returning the Fanl_Discharge_Pressure,
Fanl _Discharge_Temperature, and the Fanl _Discharge_Air_Flow.

Parameter Description:
A_Rotorl identifies the Rotorl whose state is needed.
Returning_FanlJDischarge_Pressure is the Fanl_Discharge_Pressure portion

of Rotorl object's state, in pounds per square inch
Returning_FanlJ)ischargeJTemperature is theFanl_Discharge_Temperatureportion

of Rotorl object's state, in degrees Rankine
Returning_Fanl_Discharge_Air_Flow is the Fanl_Discharge_Air_Flow portion

of Rotorl object's state, in pounds per second

procedure Get_Turbinel_Discharge_Air_From
(A_Rotorl: in Rotorl;
Retuming_Turbinel_Discharge_Pressure : out Set.Pressure;
Retuming_Turbinel_Discharge_Temperature : out

Set.Temperature;
Retuming_Turbinel_Discharge_Air_Flow : out Set.Air_Flow);

„I ***

Description:
Initiates a report of the specified Rotorl object's
state returning the TurbinelJDischargeJPressure,
Turbinel_DischargeJTemperature, and the 7urbinel_Discharge_Air_Flow.

Parameter Description:
A_Rotorl identifies the Rotorl whose state is needed.
ReturningJTurbinel_Discharge_Pressure is the Turbinel_Discharge_Pressure portion

of Rotorl object's state, in pounds per square inch
Returning_Turbinel_Discharge_Temperature is the Turbinel_Discharge_Temperature portion

of Rotorl object's state, in degrees Rankine
Retuming_Turbinel_Discharge_Air_Flow is the Turbinel_J)ischarge_Air_Flow portion

of Rotorl object's state, in pounds per second

procedure Get_Rpm_From (A_Rotorl : in Rotorl; Retuming_Rpm : out SetRpm);

Description:
Initiates a report of the specified Rotorl object's
state returning the Rpm.

Parameter Description:
A_Rotorl identifies the Rotorl whose state is needed.
Returning_Rpm is the Rpm portion

of Rotorl object's state, in rpm

procedure Get_Vibration_From (A_Rotorl : in Rotorl;
Retuming_Vibration: out Vibration);

\ ***
Description:

Initiates a report of the specified Rotorl object's
state returning the Vibration.

Parameter Description:
A_Rotorl identifies the Rotorl whose state is needed.
ReturningJ/ibration is the Vibration portion

of Rotorl object's state, in mils

pragma Inline (Give_Fanl_Inlet_Air_To, Get_Fanl_Discharge_Air_From,
GiveJTurbine l_Inlet_Air_To, Get_Turbine l_Discharge_Air_From,

100 CMU/SEI-88-TR-30

Get_Rpm_From, Get_Vibration_From);

private
type Rotorl_Representation;
— incomplete type, defined in package body

type Rotorl is access Rotorl_Representation;
- pointer to an Rotorl representation

end Rotorl_Object_Manager;

C.ll. Package Rotor2_Object_Manager
»*•*•***«*»**•*»»**•*•»»»»»»***•*»**»»•«*»»»**»»**»»*»******»*•*»

Module Name:
Rotor2_Object_Manager

Module Type:
Package Specification

Module Purpose:
This package manages objects which simulate the
Engine Rotor2 for the C-141 simulator.
This management entails creation ofRotor2 object's
update, maintenance of its state, and state
reporting capabilities.

Module Description:
The Rotor'2 object manager provides a means to create
an Rotor2 object via the New_Rotor2 operation and returns
an identification for the Rotor2, which is to be used when
updating I accessing the Rotor2 object's state as described below.

The Rotor'Z object manager provides a means to update the
state of the object via the:

1) Give_Fan2_Inlet_Air_To
2) Give_Turbine2JnletJtir_To
3) Oive_Torque_To

operations, requiring the following external state information:
1) Fan2_Inlet_Pressure pounds per square inch
Fan2_Inlet_Temperature degrees Rankine

Fan2_Inlet_Air_Flow pounds per second
2) Turbine2_Inlet_Pressure pounds per square inch
Turbine2_InletJTemperature degrees Rankine

Turbine2_Inlet_Air_Flow pounds per second
3) TheJTorque pound feet

The Rotor2 object manager provides a means of obtaining
state information via the:

1) Get_Fan2_Discharge_Air_From
2) Get_Turbine2_Discharge_Air_From
3) Get_Vibration_From

operations, yielding the following internal state information:
1) Fan2_Discharge_Pressure pounds per square inch

Fan2_Discharge_Temperature degrees Rankine
Fan2_Discharge_Air_Flow pounds per second

2) Turbine2_Discharge_Pressure pounds per square inch
Turbine2_Discharge_Temperature degrees Rankine
Turbine2_Discharge_Air_Flow pounds per second

3) The_Vibration mils

CMU/SEI-88-TR-30 101

References:
none

Design Documents:
none

User's Manual:
none

Testing and Validation:
none

Notes:
none

Modification History:
24Aug87 cpp Creation

13Jul88 kl Modified

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied.

Disclaimer:
"This work was sponsored by the Department of Defense.'

with Standard_Engineering_Type8;

package Rotor2_Object_Manager is

package Set renames Standard_Engineering_Types;

type Rotor2 is private ;
— an Rotor'Z is an abstraction of a Rotor'2 within an Engine.

type Vibration is range 0 .. 5;
— mils

function New_Rotor2 return Rotor2;

Description:

This function returns a pointer to a new Rotor2 object
representation. This pointer will be used to identify
the object for state update and state reporting purposes.

Parameter Description:
return Rotor2 which is an access to a Rotor2 object.

procedure Give_Fan2_Inlet_Air_To
(A_Rotor2 : in Rotor2;
Given_Fan2_Inlet_Pres8ure : in Set.Pressure;
Given_Fan2_Inlet_Temperature : in Set.Temperature;
Given_Fan2_Inlet_Air_Flow: in SetAir_Flow);

I ***

Description:
Initiates a change in the specified Rotor2 object's
state given the Fan2_Inlet_Pressure, Fan2_lnlet_Temperature,
and the Fan2_Inlet^Air_Flow.

102 CMU/SEI-88-TR-30

Parameter Description:
A_Rotor2 identifies the Rotor2 whose state is to be changed.
Given_Fan2_Inlet_Pressure is the Inlet Pressure, in pounds
per square inch
Given_Fan2_Inlet_Temperature is the Inlet Temperature,
in degrees Rankine
Given__Fan2_Inlet_Air_Flow is the Inlet Air_Flow, in pounds
per second

»»•»•*•»•»••»*»•*»»**••«»**»»•**»***»*»***»*•»*»****»*»»»****

procedure Give_Turbine2_Inlet_Air_To
(A_Rotor2 : in Rotor2;
Given_Turbine2_Inlet_Pressure : in Set.Pressure;
Given_Turbine2_Inlet_Temperature : in Set.Temperature;
Given_Turbine2_Inlet_Air_Flow : in Set_Air_Flow);

I***

Description:
Initiates a change in the specified Rotor2 object's
state given the Turbine2_Inlet_Pressure, Turbine2Jnlet_Temperature,
and the Turbine2_Inlet_Air_Flow.

Parameter Description:
A_Rotor2 identifies the Rotor2 whose state is to be changed.
Given_Turbine2_lnlet_Pressure is the Inlet Pressure,
in pounds per square inch
Given_Turbine2_Inlet_Temperature is the Inlet Temperature,
in degrees Rankine
Giuen_Turbine2_Inlet_Air_Flow is the Inlet Air_Flow, in
pounds per second

procedure Get_Fan2_Discharge_Air_From
(A_Rotor2 : in Rotor2;
Retuming_Fan2_Di8charge_Pressure : out Set.Pressure;
Returning_Fan2_Discharge_Temperature : out Set.Temperature;
Returning_Fan2_Discharge_Air_Flow: out Set.Air_Flow);

._ | ***
Description:

Initiates a report of the specified Rotor2 object's
state returning the Fan2JDischarge_Pressure,
Fan2_Discharge_Temperature, and the Fan2_Discharge_Air_Flow.

Parameter Description:
A_Rotor2 identifies the Rotor2 whose state is needed.
Returning_Fan2_Discharge_Pre3sure is the Fan2_Discharge_Pressure portion

ofRotor2 object's state, in pounds per square inch
Returning_Fan2JDischarge_Temperature is the Fan2_Discharge_Temperature portion

of Rotor2 object's state, in degrees Rankine
Returning_Fan2_Discharge_Air_Flow is the Fan2_Discharge_Air_Flow portion

ofRotor2 object's state, in pounds per second

procedure Get_Turbine2_Discharge_Air_From
(A_Rotor2 : in Rotor2;
Rehirniiig_Turbine2_Discharge_Pressure : out Set.Pressure;
Returning_Turbine2_Discharge_Temperature : out

Set. Temperature;
Retuming_Turbine2_Discharge_Air_Flow : out SetAir_Flow);

_ | ***
Description:

Initiates a report of the specified Rotor2 object's
state returning the Turbine2_Discharge_Pressure,
Turbine2_Discharge_Temperature, and the Turbine2_Discharge_Air_Flow.

Parameter Description:

CMU/SEI-88-TR-30 103

A_Rotor2 identifies the Rotor2 whose state is needed.
Returning_Turbine2_Discharge_Pressure is the Turbine2_Discha.rge_Pressu.re portion

ofRotor2 object's state, in pounds per square inch
Returning_Turbine2_Discharge_Temperature is the Turbine2_Discharge_Temperature portion

ofRotor2 object's state, in degrees Rankine
Returning_Turbine2_Discharge_Air_Flow is the Turbine2_Discharge_Air_Flow portion

of^otor2 object's state, in pounds per second
*****«•»; ***

procedure Get_Vibration_From (A_Rotor2 : in Rotor2;
Returning_Vibration: out Vibration);

I•**«*»•*»«»»»»**«»»»*»*»»»»«*»**»»«»»*»»*»«**»«»***»***»»*»**»***

Description:
Initiates a report of the specified Rotor2 object's
state returning the Vibration.

Parameter Description:
A_Rotor2 identifies the Rotor2 whose state is needed.
Returning_Vibration is the Vibration portion

ofRotor2 object's state, in mils

procedure Give_Torque_To (A_Rotor2 : in Rotor2; Tbe_Torque : in Set.Torque);
„ I»»»«»»»**»«•***»**»*»«»»«»»»*»»«»*»»*»»**»*»*»«•*»*****»»*»*»•*»*

Description:
Initiates a change in the specified Rotor2 object's
state given the The_Torque.

Parameter Description:
A_Rotor2 identifies the Rotor2 whose state is to be changed.
TheJTorque is the Torque, in pound feet

pragma Inline (Give_Fan2_Inlet_Air_To, Get_Fan2_Di8charge_Air_From,
Give_Turbine2_Inlet_Air_To, Get_Turbine2_Discbarge_Air_From,
Get_Vibration_From, Give_Torque_To);

private
type Rotor2_Representation;
- incomplete type, defined in package body

type Rotor2 is access Rotor2_Representation;
— pointer to an Rotor2 representation

end Rotor2_Object_Manager;

—K+++++++++++++++++++++++++++++++++++-M

C.12. Package Flight_Executive

Module Name:
Flight Executive

Module Type:
Package Specification

Module Purpose:
Executive for flight systems

104 CMU/SEI-88-TR-30

Module Description:
This executive is responsible for processing all flight systems.
Processing involves handling all connections between the flight
systems and processing each system.

References:
Design Documents:

User's Manual:
none

Testing and Validation:
none

Notes:
none

Modification History:
21Aug87 kl created

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied

Disclaimer:
"77iis work was sponsored by the Department of Defense."

with GlobalJTypes;

package Flight_Executive is

procedure Update_Flight_Executive
(Frame : in Global_Types.Execution_Sequence);

— I Description:
— I executive which updates all flight systems
-I
— I Parameter Description:
— I frame is the current executing frame
_|********»**»•*»»*****»********«»*»******»*»»*»***»**»**»»**»****»

end Flight_Executive;

C.13. Package body Flight_Executive
»*****••*****•**»**••**»***«**»***•**»«»**»»*»»*«**•***»*********

Module Name:
Flight Executive

Module Type:
Package Body

Module Description:
This executive is responsible for processing all flight systems.
Processing involves handling all connections between the flight
systems and processing each system.

CMU/SEI-88-TR-30 105

References:
Design Documents:

none

Testing and Validation:
none

Notes:

Modification History:
21Aug87 kl created

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied.

Disclaimer:
"This work was sponsored by the Department of Defense."

with Flight_System_Names;
with Flight_Executive_Connection_Manager;

with Engine_System;

package body Flight_Ezecutive is

type Active_In_Prame is
array (Flight_System_Names.Name_Of_A_Flight_System) of Boolean;

Its_Time_To_Do : constant array (Global_Types.Execution_Sequence) of
Active_In_Frame :=

(Global_Types.Frame_l_Modules_Are_Executed =>
(Flight_System_Names.Engine => (True), others => (False)),

Global_Types.Frame_2_Modules_Are_Executed =>
(Flight_System_Names.Electrical => (True), others => (False)),

Global_Types.Frame_3_Modules_Are_Executed => (others => (False)),
Global_Types.Frame_4_Modules_Are_Executed => (others => (False)),

Global_Types.Frame_5_Modules_Are_Executed =>
(Flight_System_Names.Engine => (True), others => (False)),

Global_Types.Frame_6_Modules_Are_Executed => (others => (False)),
Global_Types.Frame_7_Modules_Are_Executed => (others => (False)),
Global_Types.Frame_8_Modules_Are_Executed => (others => (False)));

procedure Update_Flight_Executive (Frame : in
Global_Types.Execution_Sequence) is

_I»*«»»»*»**»*»»»*»»*»•««*»»*•*»»**•*•»»»****»*»***»*•*•»**»»»*****

-1 Description:
— I flight executive. Performs process connections and update
— I as an atomic action for each system.
-I
— I Parameter Description:
— I frame is the current executing frame
-I
-1 Notes:

106 CMU/SEI-88-TR-30

• I none
. | ***

begin
for A_System in Flight_System_Names.Name_Of_A_Flight_System loop

if Its_Time_To_Do (Frame) (AJSystnm) then
case A_System ie

when Flight_System_Names.Electrical =>
null;

when Flight_System_Names.Engine =>
Flight_Executive_Connection_Manager.

Process_Extemal_Connections_To_Engine_System;
Enginc_System.Update_Engine_System;

end caae ;
end if;

end loop ;

end Update_Flight_Executive;

begin - flight_Executive
null;

end Flight_Executive;

C.14. Package Flight_System_Names
_|***

Module Name:
Flight System Names

Module Type:
Package Specification

Module Purpose:
Names all systems under flight executive

Module Description:
Provides the names of all systems under flight executive.

References:
Design Documents:

none

User's Manual:
none

Testing and Validation:
none

Notes:
none

Modification History:
21Aug87 kl created

Distribution and Copyright Notice:
Distribution unlimited

CMU/SEI-88-TR-30 107

No warranty is implied.

Disclaimer:
"This work was sponsored by the Department of Defense."

»»»»*»**»*»»»»***»*»****»***»*»»*»»**»***»*•***»*»**»*»»**•**••»*

package Flight_System_Names is

type Name_Of_A_Flight_System is (Electrical, Engine);

type Aircraft_Engines is (Engine_l, Engine_2, Engine_3, Engine_4);

end Flight_System_Names;

C.15. Package Flight_Executive_Connection_Manager
„ | *»**»»»***»***»»*****»**•*»*»****»»*»»»*»***»**«*********»*******

Module Name:
Flight Executive Connection Manager

Module Type:
Package Specification

Module Purpose:
Describes and processes all connections between flight systems

Module Description:
This package is responsible for proccessing all connections between
systems at all levels within the Flight Executive.

References:
Design Documents:

none

User's Manual:
none

Testing and Validation:
none

Notes:
none

Modification History:
21Aug87 kl created

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied.

Disclaimer:
"This work was sponsored by the Department of Defense."

»************************************* ***************************

package Flight_Executive_Connection_Manager is

procedure Process_External_Connections_To_Engine_System;
_ I***»»»•*»«»***»»*•*»»***»*»•*»*»**»»****«»****»******»*****»***»*

108 CMU/SEI-88-TR-30

Description:
This procedure processes all connections between the engine
system and the other systems at the flight executive level.
Processing of connections means to make the system consistent
with its environment.

Parameter Description:
none

end Flight_Executive_Connection_Manager;

C.16. Package body Flight_Executive_Connection_Manager
•••••ft***
Module Name:

Flight Systems Connection Manager

Module Type:
Package Body

Module Description:
The procedure below defines all connections for passing data
between flight systems. Each connection is handled by a procedure
call.

References:
Design Documents:

none

Testing and Validation:
none

Notes:
none

Modification History:
21Aug87 kl created

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied.

Disclaimer:
"This work was sponsored by the Department of Defense."

package body Flight_Executive_Cormection_Manager is

procedure Process_Extarnal_Connections_To_Engirie_Sy8tem is separate ;
_I»**••»»••*»••»**»»»#••»»•»**•*•***»»•»*****»»****»#*»»•***»»*»*»*

Description:
This procedure processes all connections between the engine
system and the other systems at the flight executive level.
Processing of connections means to make the system consistent
with its environment.

CMU/SEI-88-TR-30 109

• I Parameter Description;
• I none
• I

• I Notes;
• I none

end Flight_Executdve_Connection_Manager;

C.17. Separate Procedure body
Process_External_Connections_To_Engine_System

Module Name:

Process_Extemal_Connections_To_Engine_System

Module Type:
Separate Procedure Body

Module Purpose:
Process connections between an engine system and all external
systems.

Module Description:
This procedure processes all connections between an engine system
and external systems. Processing of connections means to make
the system consistent with its environment.

Parameter Description:
none

References:
Design Documents:
none

User's Manual:
none

Testing and Validation:
none

Notes:
none

Modification History:
25Aug87 kl created

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied

Disclaimer:
"This work was sponsored by the Department of Defense."

with Standard_Engineering_Types;
with Flight_System_Names;

with Bumer_Object_Manager;

110 CMU/SEI-88-TR-30

with Engine_System_Aggregate;
with Rotor2_Object_Manager;

separate (Flight_Executive_Connection_Manager)

procedure Process_Extemal_Connections_To_Engine_System is

Integrated_Drive_Energy : Integer;

- A local variable is defined to store the value spark when it is read from
— the ignition system. This is a convention, described in the SEI Ada
- Coding Guidelines, to restrict the spread of embedded function calls, i.e.
— function calls as parameters within other function calls.

subtype Spark_Type is Integer range 0 .. 20;
Some_Spark : SparkJType;
The_Burner_Spark : Bumer_Object_Manager.Spark;

function Spark_Conversion (In_Spark : in Spark_Type)
return Bumer_Object_Manager.Spark is

_. |***
Description:

This function performs a type conversion. It converts
the spark from the Ignition to a spark that the
Burner_Object_Afonager can accept. This is done
as an example of how the type conversions can be used to
connect objects which either communicate through a
valve Iregulator, or need different grains of coarseness of
the information.
In this case we are assuming that the Ingition system
needs finer information about the spark than the Burner.

Parameter Description:
InJSpark is the spark that the Ignition supplies,
return Spark is the spark returned for the Burner

_ | ***
begin

case In_Spark is
when 0 .. 2 =>

RETURN Bumer_Object_Manager.None;
when 3 .. 9 =>

RETURN Bumer_Object_Manager.Low;
when 10 .. 20 =>

RETURN Bumer_Object_Manager.High;
end case ;

end Spark_Conversion;

begin — Process _Engine_Connections_To

— All engine external connections are handled in this procedure.
— Each engine has the same kind of connections, but each engine is
— connected to different instances of other objects. Thus all engines
— are handled alike here. The different connections are described by
— the engine _sy stem ^aggregate package.

for An_Engine in Flight_System_Names.Aircraft_Engines loop

— Get_Air_From (thejenvironment);
- Give_Air_To (a_diffuser);

goes here

— Get_Mach_Number_From (thejairframe);
- Give_Mach_Number_To (ajdiffuser);

CMU/SEI-88-TR-30 111

— goes here

— Get_Discharge_Pressure_From (the_cabin_air);
— Get_Discharge_Pressun' "-om (the_air_conditioning_system);

any processing of these ."O lieces of information goes here
— GiveJDischarge_Pressure_To (a_bleed_valve);

goes here

— Get_Torque_From (the _hydraulic_system);
— Get_Torque_From (thejail_system);
— Get_Torque_From (thejstarterjsystem);
— Get_Torque_From (thejuel_system);
— Get_Torque_From (the_electricaljsystem);

any processing of these five pieces of information goes here
— Give_Torque_To (a_rotor2); - goes here

— for now we are just showing one of these five connections, the one
— from the electrical system, for the complete system, all five pieces
— of information would be gathered and processed before passing the
— information to the Rotor2.

Integrated_Drive_Energy := 15;

Rotor2_Object_Manager.Give_Torque_To
(A_Rotor2 => Engine_System_Aggregate.Engines (An_Engine).The_Rotor2,
The_Torque => Standard_Engineering_Types.Torque

(Integra tad_Drive_Energy));

- Get_Fuel_FlowJFrom (the Jueljsystem);
- Give_Fuel_Flow_To (ajburner);

goes here

— get Spark from the Ignition and feed it to the Engine Burner.

Some_Spark := 15;

The_Bumer_Spark := Spark_Conversion (Some_Spark);

Bumer_Obj ect_Manager. Give_Spark_To
(A_Bumer => Engine_System_Aggregate.Engines (An_Engine).The_Bumer,
Given_Spark => The_Bumer_Spark);

end loop ;
end Process_E:rtemal_Coimectioiu_To_Engine_System;

C.18. Package Engine_System
„ | ***«•»**»****•******•**»»•»»*»*»*»*«»*»*•**»*»»*»**»*»«»**»**»*»»

— I Module Name:
— I Engine_System
-I
-1 Module Type:
— I Package Specification
-I
— I Module Purpose:
— I This package contains the single procedure call to update the

112 CMU/SEI-88-TR-30

simulation of an Engine System. It is the sole interface to the Engines
from the perspective of the executive.

Module Description:
The single operation provided by this package is parameterized with

the name of the engine 'o b» updated. The operation accomplishes
two sets of lower-level operations:

•one to update the state of the objects at the boundries of the
engine system which have connections (interfaces) with objects
in other systems external to the engine system.

-and another to update all objects internal to the engine system
based on the connections (interfaces) between each other.

Specifying the name of the engine allows the work to be spead out
across the available processing time, and pushes this decision up
to a higher, more intelligent being (the executive) to choose the
order of updating the engines in the engine system.

References:
Design Documents:

User's Manual:
none

Testing and Validation:
none

Notes:
none

Modification History:
21AUG87 CPP Creation

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied

Disclaimer:
"This work was sponsored by the Department of Defense."

package Engine_System is

procedure Update_Engine_System;
„ |***

Description:
Allows the simulation of the Engine System to be updated
and made consistent. Then other systems dependent upon
the Engine System can access the consistent state of the
Engine System. It is an atomic action.

Parameter Description:
Given_Engine_Name
It's type is declared in Flight _Sy stem _Names and is used
to allow a higher, more intelligent being (the executive) to
choose the order of updating the engines in the
engine system.

_|***

end Engine_System;

CMU/SEI-88-TR-30 113

C.19. Package body Engine_System

Module Name:

Engine _Sy stem

Module Type:
Package Body

Module Description:
The operation provided by this package allows the "user" to

update the state of an engine, i.e. update the state of the
objects which simulate the individual parts of the engine.

Because this system is at the level above the object
managers, we have decided that the system will internally
implement the conection manager at this level since we don't
have to go around and touch the object managers and tell them
to update themselves. The object managers update themselves
(thier state) when the connection is made and the state
information is given to them.

References:
Design Documents:
Engine Object Diagram.

Testing and Validation:
none

Notes:
THIS IS NOT A FULL IMPLEMENTATION!!!
The code is done to demonstrate the process of connecting objects
in a system.

The connection manager wasn't implemented at this level
for the reasons stated above in the Module Description.

Once the Engine system has been updated, i.e., it's state
made consistent, any objects whose state is needed by objects
in other systems can be had by directly accessing the object
and getting it's state.

All internal routines preform a type conversion on the data
when the data is transfered from engine object to engine object.
This is done to allow flexibility and greater potential for reuse
of object managers. Another reason for type conversions, which
is related to the flexibility issue, is that there may be something
to model at the connection between the objects, i.e. a valve,
regulator, etc., for which an object manager is not necessary.
Therefore, any calculations or transformations which need to occur
and be modelled at the connection can be made when the connection
between the objects occur.

Modification History:
24AUG87 cpp Creation

Distribution and Copyright Notice:
Distribution unlimited

No warranty is implied.

114 CMU/SEI-88-TR-30

-I
~ I Disclaimer:
— I "This work was sponsored by the Department of Defense."
-I
_ | »*»»*»»»»**«*»»**»*•»****•*«***»*»**»********•**•*»*»»*»*»*•»*»**

with Standard_Engineering_Types;
with Flight_System_Names;

with Engine_System_Aggregate;
with Difiuser_Object_Manager;
with Engine_Caaing_Object_Manager;

package body Engine_System is

procedure Update_Engine_System is

Description:
Allows the simulation of the Engine System to be updated
and made consistent. Then other systems dependent upon
the Engine System can access the consistent state of the
Engine System. It is an atomic action.

The object managers which simulate the various parts of the
engine, thus comprising the engine system, are
needed to update the system's state are the following:
Diffuser_Object_Manager
Rotor 1 _ObjectJAanager
Fan_Duct_Object_Manager
Rotor2_Object_Manager
Burner_Object_Manager
Exhaust_Object_Manager
Engine_Casing_Object_Manager
The connections between these objects and the state information
flowing between the objects were derived solely from the
Engine Physical Model Diagram in ???.

Parameter Description:
Given_Engine_Name
It's type is declared in Engine_Names and is used to allow
a higher, more intelligent being (the executive) to
choose the order of updating the engines in the
engine system.

Note:
This routine models the connection manager for this level.

Diffuser_Discharge_Pressure : Standard_Engineering_Types.Pressure;
Diffuser_Discharge_Temperature : Standard_Engineering_Types.Temperature;
DifPuser_Discharge_Air_Flow: Standard_Engineering_Types.Air_Flow;

begin
for An_Engine in FUght_System_Names.Aircraft_Engines loop

— Model the connection characterized by the dependence of the
- Engine Casing on the Diffuser for Pneumatic ^Energy.

Diffuser_0bj ect_Manager. Get_Discharge_Air_From
(A_Diffiiser =>

Engine_System_Aggregate.Engines (An_Engine).The_Diffuaer,
Returning_Discharge_Pressure => DiflTiser_Discharge_Pressure,
Returning_Discharge_Temperature =>

Diffuser_Discharge_Temperature,
Retuming_Discharge_Air_Flow => Difl\iser_Discharge_Air_Flow);

CMU/SEI-88-TR-30 115

Engine_Casing_Object_Manager.Give_Inlet_Air_Flow_To
(A_Engine_Casing => Engine_System_Aggregate.Engines (An_Engine).

The_Engine_Casing,
Given_Inlet_Air_Flow => Difniser_Discharge_Air_Flow);

end loop ;
end Update_Engine_System;

end Engine_System;

C.20. Package Engine_System_Aggregate

Module Name:
Engine _Sy stem Aggregate

Module Type:
Package Specification

Module Purpose:
This package names the TurboRotorl Engines and their parts.

Module Description:
A TurboRotorl Engine is an aggregate of parts:

Diffuser,
Rotorl,
Fan_Duct,
Rotor2,
Bleed Valve,
Burner,
Exhaust,
EnginejOasing.

The parts of a TurboFanl Engine are objects which have state
and suffer actions. Each part is managed by it's own object
manager. This package builds the four engines by calling on
the various object managers to create the parts. It then stores
references to the parts in a constant array indexed by the
Aircraft _Engines. The constant array
is created when the package is elaborated. The constant array is
called Engines. A part of an Engine is referenced as:

Engines(Engine_Name). The_<part_kind>
For example, the Rotorl of the second Engine is:

Engines(EngineJ!). The_Rotorl

References:
Design Documents:

none

User's Manual:
none

Testing and Validation:
none

Notes:
Optimizations which were implemented: the initialization of Engines

116 CMU/SEI-88-TR-30

--1 occurs at the declaration of the Object instead of the body because
— I the number of engines and the parts shouldn't change, thus the object
— I was also made to be constant array of Engines.

-1 Modification History:
-I 20APR87 CPP Creation
-I

-1 Distribution and Copyright Notice:
— I Distribution unlimited
-I
— I No warranty is implied.
-I
-I Disclaimer:
— I "This work was sponsored by the Department of Defense."
-I

with Flight_System_Names;

with Bleed_Valve_Object_Manager;
with Bumer_Object_Manager;
with DiHTiser_Object_Manager,
with Engine_Casing_Object_Manager;
with Eihaust_Object_Manager,
with Fan_Duct_Object_Manager;
with Rotorl_Object_Manager;
with Rotor2_0bject_Manager;

package Engine_System_Aggregate is

type Engine_Representation is
record

— Defines an engine representation as consisting of:
The_Diffuser: Difliiser_Object_Manager.Diffuser;
The_Rotorl: Rotorl_Object_Manager.Rotorl;
The_FanwDuct: Fan_Duct_Object_Manager.Fan_Duct;
The_Rotor2 : Rotor2_Object_Manager.Rotor2;
The_Bleed_Valve : Bleed_Valve_Object_Manager.Bleed_Valve;
The_Bumer: Bumer_Object_Manager.Bumer;
The_Exhaust • Ezhaust_Object_Manager.Exhaust;
The_Engine_Caaing : Engine_Casing_Object_Manager.Engine_Casing;

end record ;

Engines : constant array (Flight_System_Names.Aircraft_Engines) of
Engine_Representation :=

- Defines a constant array which holds all 4 engines in the system
— and initializes them (i.e. all their parts)
(Flight_System_Names.Engine_l =>

(The_Difi\i8er => Difluser_Object_Manager.New_Diffuser,
The_Rotorl => Rotorl_Object_Manager.New_Rotorl,
Tb.e_Fan_Duct => Fan_Duct_Object_Manager.New_Fan_EHict>

The_Rotor2 => Rotor2_Object_Manager.New_Rotor2,
The_Bleed_Valve => Bleed_Valve_Object_Manager.New_Bleed_Valve,
The_Bumer => Bumer_Object_Manager.New_Burner,
The_Exhaust => Exhaust_Object_Manager.New_Exhaust,
The_Engine_Caaing =>

Engine_Casiiig_Object_Manager.New_Engine_Casing),

Flight_System_Namea.Engine_2 =>
(The_Difiiiser => DifiTiser_Object_Manager.New_Dilfiiser,
The_Rotorl => Rotorl_Object_Manager.New_Rotorl,
The_Fan_Duct => Fan_Duct_Object_Manager.New_Fan_Duct,
The_Rotor2 => Rotor2_Object_Manager.New_Rotor2,
The_Bleed_Valve => Bleed_Valve_Object_Manager.New_Bleed_Valve,
The_Bumer => Bumer_Object_Manager.New_Bnmer,

CMU/SEI-88-TR-30 117

The_Exhaust => Exhaust_Object_Manager.New_Exhaust,
The_Engine_Casing =>

Engine_Casing_Object_Manager.New_Engine_Casing),

Flight_System_Names.Engine_3 =>
(The_Diffuser => Diffuser_Object_Manager.New_Diffuser,
The_Rotorl => Rotorl_Object_Manager.New_Rotorl,
The_Fan_Duct => Fan_Duct_Object_Manager.New_Fan_Duct,
The_Rotor2 => Rotor2_Object_Manager.New_Rotor2,
The_Bleed_Valvo => Bleed_Valve_Objact_Manager.New_Bleed_Valve,
The_Bumer => Bumer_Object_Manager.New_Bumer,
The_Exhaust => Exhaust_Object_Manager.New_Exhaust,
The_Engine_CasriLng =>

Engine_Casing_Object_Manager.New_Engine_Casing),

Flight_System_Names.Engine_4 =>
(The_Diffuser => Difiuser_Object_Manager.New_Diffuser,
The_Rotorl => Rotorl_Object_Manager.New_Rotorl,
Tbe_Fan_Duct => Fan_Duct_Object_Manager.New_Fan_Duct,
The_Rotor2 => Rotor2_Object_Manager.New_Rotor2,
The_Bleod_Valve => Bleed_Valve_Object_Manager.New_Bleed_Valve,
The_Bumer => Bumer_Object_Manager.New_Bumer,
The_Exliaust => Exhaust_Object_Manager.New_Exb.aust,
The_Engine_Casing =>

Engine_Casing_Object_Manager.New_Engine_Casing));

end Engine_System_Aggregate;

118 CMU/SEI-88-TR-30

References
[1] Booch, Grady.

Software Engineering with Ada.
The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1987.

[2] Booch, Grady.
Software Components with Ada.
The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1987.

[3] Hesse, Walter J. and Mumford, Nicholas V. S., Jr.
Jet Propulsion for Aerospace Applications.
Pitman Publishing Corporation, New York, NY, 1964.

CMU/SEI-88-TR-30 119

120 CMU/SEI-88-TR-30

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
1b. RESTRICTIVE MARKINGS

NONE
2a. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

4 PERFORMING ORGANIZATION REPORT NUM8ERIS)

CMU/SEI-88-TR-30

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-88-31
6a. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.

Sb. OFFICE SYMBOL
(If applicable)
SEI

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c. AOORESS (City. State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. AOORESS (City. State and ZIP Code)

ESD/XRS1
HANSCOM AIR FORCE BASE
HAMRrOM. MA 01771

NAME OF FUNOING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b OFFICE SYMBOL
(If applicable)

ESD/XRS1

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003
ADDRESS (City. State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

. TITLE (Include Security Classification!

AN OOP PARADIGM FOR FLIGHT SIMULATORS, 2nd

63752F

IITION

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

Kenneth J. Lee, Michael S. Rissman, Richard D'Ippolito, Charles Plinta, Roger Van Scov
13a. TYPE OF REPORT

FT NAT

13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr.. Mo., Day)

September 1988
15. PAGE COUNT

120
16. SUPPLEMENTARY NOTATION

17. COSATI COOES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverie if necessary and identify by block number)

object-oriented flight simulators
software engineering
Ada

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report presents a paradigm for object-oriented implementations of flight simulators.

It is a result of work on the Ada Simulator Validation Program (ASV) carried out by

members of the technical staff at the Software Engineering Institute (SEI).

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED £j SAME AS RPT. Q OTIC USERS Q

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION
22a. NAME OF RESPONSIBLE INOIVIOUAL

KARL H. SHINGLER
22b. TELEPHONE NUMBER

(Include Area Code)

412 268-7630
DD FORM 1473, 83 APR

22c. OFFICE SYMBOL

SEI JPO
EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAG;

